Searching for the analogues of 1,1-dinitro-2,2-diamino ethylene (FOX-7) by high-throughput computation and machine learning

Wen Qian , Jing Huang , Shitai Guo , Bowen Duan , Weiyu Xie , Jian Liu , Chaoyang Zhang
{"title":"Searching for the analogues of 1,1-dinitro-2,2-diamino ethylene (FOX-7) by high-throughput computation and machine learning","authors":"Wen Qian ,&nbsp;Jing Huang ,&nbsp;Shitai Guo ,&nbsp;Bowen Duan ,&nbsp;Weiyu Xie ,&nbsp;Jian Liu ,&nbsp;Chaoyang Zhang","doi":"10.1016/j.fpc.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>1,1-dinitro-2,2-diamino ethylene (FOX-7) is typically representative of low sensitivity and high energy compound. In this work, analogues of FOX-7 are screened using a combined method of high-throughput computation (HTC) and machine learning (ML). The molecules are generated with typical unsaturated hydrocarbons backbones and random combination of substituents -H, -NH<sub>2</sub> and -NO<sub>2</sub>, then HTC is performed based on 200 sample molecules. ML models are established based on the HTC results, with detonation parameters predicted using the most accurate model of extreme gradient boosting (XGB). Finally, stability of the filtered high energy molecules are confirmed by quantum chemistry calculations, and besides FOX-7, 8 more energetic molecules with high energy as well as high stability (detonation velocity ≥ 8841.1 m/s, detonation pressure ≥ 34.6 GPa and stability parameter bond dissociation energy ≥ 201.7 kJ/mol) are achieved. This work has shown the efficiency of HTC and ML methods in searching new target molecules.</p></div>","PeriodicalId":100531,"journal":{"name":"FirePhysChem","volume":"3 4","pages":"Pages 339-349"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FirePhysChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667134423000202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

1,1-dinitro-2,2-diamino ethylene (FOX-7) is typically representative of low sensitivity and high energy compound. In this work, analogues of FOX-7 are screened using a combined method of high-throughput computation (HTC) and machine learning (ML). The molecules are generated with typical unsaturated hydrocarbons backbones and random combination of substituents -H, -NH2 and -NO2, then HTC is performed based on 200 sample molecules. ML models are established based on the HTC results, with detonation parameters predicted using the most accurate model of extreme gradient boosting (XGB). Finally, stability of the filtered high energy molecules are confirmed by quantum chemistry calculations, and besides FOX-7, 8 more energetic molecules with high energy as well as high stability (detonation velocity ≥ 8841.1 m/s, detonation pressure ≥ 34.6 GPa and stability parameter bond dissociation energy ≥ 201.7 kJ/mol) are achieved. This work has shown the efficiency of HTC and ML methods in searching new target molecules.

Abstract Image

通过高通量计算和机器学习寻找1,1-二硝基-2,2-二氨基乙烯(FOX-7)的类似物
1,1-二硝基-2,2-二氨基乙烯(FOX-7)是典型的低灵敏度和高能化合物的代表。在这项工作中,使用高通量计算(HTC)和机器学习(ML)的组合方法筛选FOX-7的类似物。分子由典型的不饱和烃主链和取代基-H、-NH2和-NO2的随机组合产生,然后基于200个样品分子进行HTC。基于HTC结果建立了ML模型,并使用最精确的极限梯度助推(XGB)模型预测了爆震参数。最后,通过量子化学计算证实了过滤后的高能分子的稳定性,除FOX-7外,还获得了8个高能高稳定性分子(爆速≥8841.1m/s,爆压≥34.6GPa,稳定参数键离解能≥201.7kJ/mol)。这项工作显示了HTC和ML方法在寻找新的目标分子方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信