De-quan CHEN , An WANG , Gui-rong BAO , Peng GAO , Jia LUO , Xue-wu JI , Wen-yao Deng , Li LIU
{"title":"Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose","authors":"De-quan CHEN , An WANG , Gui-rong BAO , Peng GAO , Jia LUO , Xue-wu JI , Wen-yao Deng , Li LIU","doi":"10.1016/S1872-5813(23)60340-8","DOIUrl":null,"url":null,"abstract":"<div><p>With carbon dots (CDs) as the reducing agent and support, a PdAg/CDs composite catalyst was prepared by simple light reduction method. The results of XRD, TEM, FT-IR and XPS characterization indicate that the PdAg/CDs composite has an average particle size of about 10.45 nm, where Pd and Ag exist on the surface of CDs mainly in the alloy form of zero valence. The catalytic performance of the PdAg/CDs composite was evaluated in the hydrogenolysis of glucose in water. The results illustrate that the PdAg/CDs composite catalyst is highly active in the glucose hydrogenolysis; after reaction for 3 h under 140 °C, 4 MPa of initial H<sub>2</sub> pressure, 100 mg of glucose and 25 mg of catalyst, the conversion of glucose is 68.85% and the yield of acetol reaches 8.36%.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1273-1281"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
With carbon dots (CDs) as the reducing agent and support, a PdAg/CDs composite catalyst was prepared by simple light reduction method. The results of XRD, TEM, FT-IR and XPS characterization indicate that the PdAg/CDs composite has an average particle size of about 10.45 nm, where Pd and Ag exist on the surface of CDs mainly in the alloy form of zero valence. The catalytic performance of the PdAg/CDs composite was evaluated in the hydrogenolysis of glucose in water. The results illustrate that the PdAg/CDs composite catalyst is highly active in the glucose hydrogenolysis; after reaction for 3 h under 140 °C, 4 MPa of initial H2 pressure, 100 mg of glucose and 25 mg of catalyst, the conversion of glucose is 68.85% and the yield of acetol reaches 8.36%.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.