Xin-yu PENG , Li-jun LIU , Bo-xiong SHEN , Yao BIAN , Li-chao SU
{"title":"Insight into the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts","authors":"Xin-yu PENG , Li-jun LIU , Bo-xiong SHEN , Yao BIAN , Li-chao SU","doi":"10.1016/S1872-5813(22)60069-0","DOIUrl":null,"url":null,"abstract":"<div><p>A series of metal oxide catalysts were prepared by impregnating Cu, Mn, Fe, Ce and Ti on ZSM-5 molecular sieve. The physicochemical properties of the catalysts were characterized by SEM, XRD, N<sub>2</sub> adsorption/desorption, XPS, H<sub>2</sub>-TPR, and the catalytic oxidation of toluene was investigated. The results showed that Cu/ZSM-5 had rough surface, uniform distribution of metal, good pore structure, superior low-temperature reducibility and abundant adsorbed oxygen species. Cu/ZSM-5 with 5% loading exhibited excellent catalytic activity for toluene oxidation and the best sulfur resistance performance, with <em>t</em><sub>90</sub> (GHSV=24000 h<sup>−1</sup>) being 224 °C in SO<sub>2</sub> environment. <em>In-situ</em> DRIFTS experiments revealed that the degradation path of toluene was as follows: toluene was first adsorbed on the surface of the catalyst to form adsorbed toluene, then it was converted into benzaldehyde and benzoic acid successively on the catalyst. And small molecule organics such as maleic acid and carboxylic acid were formed through ring opening reaction, and finally was oxidized to CO<sub>2</sub> and H<sub>2</sub>O.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581322600690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
A series of metal oxide catalysts were prepared by impregnating Cu, Mn, Fe, Ce and Ti on ZSM-5 molecular sieve. The physicochemical properties of the catalysts were characterized by SEM, XRD, N2 adsorption/desorption, XPS, H2-TPR, and the catalytic oxidation of toluene was investigated. The results showed that Cu/ZSM-5 had rough surface, uniform distribution of metal, good pore structure, superior low-temperature reducibility and abundant adsorbed oxygen species. Cu/ZSM-5 with 5% loading exhibited excellent catalytic activity for toluene oxidation and the best sulfur resistance performance, with t90 (GHSV=24000 h−1) being 224 °C in SO2 environment. In-situ DRIFTS experiments revealed that the degradation path of toluene was as follows: toluene was first adsorbed on the surface of the catalyst to form adsorbed toluene, then it was converted into benzaldehyde and benzoic acid successively on the catalyst. And small molecule organics such as maleic acid and carboxylic acid were formed through ring opening reaction, and finally was oxidized to CO2 and H2O.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.