Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cheng Han, Yan Wang, Daqing Jiang
{"title":"Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process","authors":"Cheng Han,&nbsp;Yan Wang,&nbsp;Daqing Jiang","doi":"10.1016/j.chaos.2023.113930","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce an HIV infection model with virus-to-cell infection, cell-to-cell infection and non-cytolytic cure. Two mean-reverting Ornstein–Uhlenbeck processes are also taken into account in the model. Firstly, it is proved that the stochastic model has a unique positive global solution. The model is found to have at least one stationary distribution by constructing suitable Lyapunov functions if the critical condition <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Then, the probability density function near the quasi-positive equilibrium is obtained by solving the corresponding Fokker–Planck equation. The spectral radius method is used to derive the virus extinction under a sufficient condition <span><math><mrow><msubsup><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>e</mi></mrow></msubsup><mo>&lt;</mo><mn>1</mn></mrow></math></span>. Finally, some numerical simulations are carried out.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077923008317","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce an HIV infection model with virus-to-cell infection, cell-to-cell infection and non-cytolytic cure. Two mean-reverting Ornstein–Uhlenbeck processes are also taken into account in the model. Firstly, it is proved that the stochastic model has a unique positive global solution. The model is found to have at least one stationary distribution by constructing suitable Lyapunov functions if the critical condition R0s>1. Then, the probability density function near the quasi-positive equilibrium is obtained by solving the corresponding Fokker–Planck equation. The spectral radius method is used to derive the virus extinction under a sufficient condition R0e<1. Finally, some numerical simulations are carried out.

具有非溶细胞治愈和Ornstein-Uhlenbeck过程的随机HIV模型动力学分析
本文介绍了一种具有病毒对细胞感染、细胞对细胞感染和非溶细胞治疗的HIV感染模型。模型还考虑了两个均值回归的Ornstein-Uhlenbeck过程。首先,证明了该随机模型具有唯一正全局解。通过构造合适的Lyapunov函数,发现当临界条件r0 >1时,模型至少有一个平稳分布。然后,通过求解相应的Fokker-Planck方程,得到准正平衡附近的概率密度函数。利用谱半径法推导了在充分条件r0 <1下的病毒消光量。最后进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信