Random noise attenuation using a structure-oriented weighted singular value decomposition

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Yankai Xu, Siyuan Cao, Xiao Pan
{"title":"Random noise attenuation using a structure-oriented weighted singular value decomposition","authors":"Yankai Xu,&nbsp;Siyuan Cao,&nbsp;Xiao Pan","doi":"10.1007/s11200-019-0723-8","DOIUrl":null,"url":null,"abstract":"<p>Singular value decomposition (SVD) is a useful method for random noise suppression in seismic data processing. A structure-oriented SVD (SOSVD) approach which incorporates structure prediction to the SVD filter is effcient in attenuating noise except distorting seismic events at faults and crossing points. A modified SOSVD approach using a weighted stack, called structure-oriented weighted SVD (SOWSVD), is proposed. In this approach, the SVD filter is used to attenuate noise for prediction traces of a primitive trace which are produced via the plane-wave prediction. A weighting function related to local similarity and distance between each prediction trace and the primitive trace is applied to the denoised prediction traces stacking. Both synthetic and field data examples suggest the SOWSVD performs better than the SOSVD in both suppressing random noise and preserving the information of the discontinuities for seismic data with crossing events and faults.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"63 4","pages":"554 - 568"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-019-0723-8","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-019-0723-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Singular value decomposition (SVD) is a useful method for random noise suppression in seismic data processing. A structure-oriented SVD (SOSVD) approach which incorporates structure prediction to the SVD filter is effcient in attenuating noise except distorting seismic events at faults and crossing points. A modified SOSVD approach using a weighted stack, called structure-oriented weighted SVD (SOWSVD), is proposed. In this approach, the SVD filter is used to attenuate noise for prediction traces of a primitive trace which are produced via the plane-wave prediction. A weighting function related to local similarity and distance between each prediction trace and the primitive trace is applied to the denoised prediction traces stacking. Both synthetic and field data examples suggest the SOWSVD performs better than the SOSVD in both suppressing random noise and preserving the information of the discontinuities for seismic data with crossing events and faults.

基于结构的加权奇异值分解的随机噪声衰减
奇异值分解(SVD)是地震资料处理中抑制随机噪声的有效方法。基于结构的奇异值分解(SOSVD)方法将结构预测与奇异值分解(SVD)滤波器相结合,除了会使断层和交叉点处的地震事件失真外,还能有效地抑制噪声。提出了一种基于加权堆栈的改进的SOSVD方法,称为面向结构的加权SVD (SOWSVD)。该方法利用奇异值分解滤波器对平面波预测产生的原始迹线的预测迹进行噪声衰减。在去噪后的预测迹叠加中,应用与预测迹与原始迹之间的局部相似度和距离相关的加权函数。综合和现场数据实例表明,对于具有交叉事件和断层的地震数据,SOWSVD在抑制随机噪声和保留不连续信息方面都优于SOWSVD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信