A COVID-19 vaccine effectiveness model using the susceptible-exposed-infectious-recovered model

Sabariah Saharan, Cunzhe Tee
{"title":"A COVID-19 vaccine effectiveness model using the susceptible-exposed-infectious-recovered model","authors":"Sabariah Saharan,&nbsp;Cunzhe Tee","doi":"10.1016/j.health.2023.100269","DOIUrl":null,"url":null,"abstract":"<div><p>Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the start of the COVID-19 outbreak in the world, including Malaysia and Thailand. This study identifies the trend of the COVID-19 outbreak before and after the vaccination campaign by using the Susceptible-Exposed-Infectious-Recovered (SEIR) and Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) models. Moreover, we predict the daily reported death and recovery cases using the SEIR model and Holt's linear trend method and then evaluate their performance. The data used in this study is real data from Malaysia and Thailand. The SEIRV model provides a comprehensive view of the efficacy of COVID-19 vaccinations in curbing the COVID-19 outbreak. This research reveals that the SEIR model outperforms Holt's linear trend method in predicting daily reported cases.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"4 ","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the start of the COVID-19 outbreak in the world, including Malaysia and Thailand. This study identifies the trend of the COVID-19 outbreak before and after the vaccination campaign by using the Susceptible-Exposed-Infectious-Recovered (SEIR) and Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) models. Moreover, we predict the daily reported death and recovery cases using the SEIR model and Holt's linear trend method and then evaluate their performance. The data used in this study is real data from Malaysia and Thailand. The SEIRV model provides a comprehensive view of the efficacy of COVID-19 vaccinations in curbing the COVID-19 outbreak. This research reveals that the SEIR model outperforms Holt's linear trend method in predicting daily reported cases.

基于易感-暴露-感染-恢复模型的COVID-19疫苗有效性模型
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引发了包括马来西亚和泰国在内的世界范围内的COVID-19疫情。本研究通过使用易感-暴露-感染-恢复(SEIR)和易感-暴露-感染-恢复-接种(SEIRV)模型确定了疫苗接种运动前后COVID-19爆发的趋势。利用SEIR模型和Holt线性趋势法对日报告死亡病例和康复病例进行预测,并对其性能进行评价。本研究使用的数据是来自马来西亚和泰国的真实数据。SEIRV模型提供了对COVID-19疫苗在遏制COVID-19爆发中的效果的全面看法。本研究表明,SEIR模型在预测每日报告病例方面优于Holt的线性趋势方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信