Rényi's entropy on Lorentzian spaces. Timelike curvature-dimension conditions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mathias Braun
{"title":"Rényi's entropy on Lorentzian spaces. Timelike curvature-dimension conditions","authors":"Mathias Braun","doi":"10.1016/j.matpur.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>For a Lorentzian space measured by <span><math><mi>m</mi></math></span><span> in the sense of Kunzinger, Sämann, Cavalletti, and Mondino, we introduce and study synthetic notions of timelike lower Ricci curvature bounds by </span><span><math><mi>K</mi><mo>∈</mo><mi>R</mi></math></span> and upper dimension bounds by <span><math><mi>N</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, namely the timelike curvature-dimension conditions <span><math><msub><mrow><mi>TCD</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>TCD</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> in weak and strong forms, where <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and the timelike measure-contraction properties <span><math><mrow><mi>TMCP</mi></mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>TMCP</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span>. These are formulated by convexity properties of the Rényi entropy with respect to <span><math><mi>m</mi></math></span> along <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-geodesics of probability measures.</p><p>We show many features of these notions, including their compatibility with the smooth setting, sharp geometric inequalities, stability, equivalence of the named weak and strong versions, local-to-global properties, and uniqueness of chronological <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-optimal couplings and chronological <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-geodesics. We also prove the equivalence of <span><math><msubsup><mrow><mi>TCD</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>TMCP</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> to their respective entropic counterparts in the sense of Cavalletti and Mondino.</p><p>Some of these results are obtained under timelike <em>p</em>-essential nonbranching, a concept which is a priori weaker than timelike nonbranching.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

For a Lorentzian space measured by m in the sense of Kunzinger, Sämann, Cavalletti, and Mondino, we introduce and study synthetic notions of timelike lower Ricci curvature bounds by KR and upper dimension bounds by N[1,), namely the timelike curvature-dimension conditions TCDp(K,N) and TCDp(K,N) in weak and strong forms, where p(0,1), and the timelike measure-contraction properties TMCP(K,N) and TMCP(K,N). These are formulated by convexity properties of the Rényi entropy with respect to m along p-geodesics of probability measures.

We show many features of these notions, including their compatibility with the smooth setting, sharp geometric inequalities, stability, equivalence of the named weak and strong versions, local-to-global properties, and uniqueness of chronological p-optimal couplings and chronological p-geodesics. We also prove the equivalence of TCDp(K,N) and TMCP(K,N) to their respective entropic counterparts in the sense of Cavalletti and Mondino.

Some of these results are obtained under timelike p-essential nonbranching, a concept which is a priori weaker than timelike nonbranching.

洛伦兹空间上的雷氏熵。类时曲率维条件
对于Kunzinger, Sämann, Cavalletti和Mondino意义上的m测量的Lorentzian空间,我们引入并研究了K∈R的类时下界和N∈[1,∞]的上维界的综合概念,即p∈(0,1)的弱和强形式的类时曲率维条件TCDp(K,N)和TCDp(K,N),以及类时测量收缩性质TMCP(K,N)和TMCP(K,N)。这些是由rsamnyi熵关于m沿概率测度的p测地线的凸性特性表述的。我们证明了这些概念的许多特征,包括它们与光滑设置的相容性、尖锐的几何不等式、稳定性、命名弱版本和强版本的等价性、局域到全局性质以及时间最优耦合和时间最长测大地线的唯一性。在Cavalletti和Mondino意义上,我们还证明了TCDp (K,N)和TMCP (K,N)与它们各自的熵对应体的等价性。其中一些结果是在类时p-本质非分支下得到的,而类时p-本质非分支是一个比类时非分支弱的先验概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信