{"title":"Rényi's entropy on Lorentzian spaces. Timelike curvature-dimension conditions","authors":"Mathias Braun","doi":"10.1016/j.matpur.2023.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>For a Lorentzian space measured by <span><math><mi>m</mi></math></span><span> in the sense of Kunzinger, Sämann, Cavalletti, and Mondino, we introduce and study synthetic notions of timelike lower Ricci curvature bounds by </span><span><math><mi>K</mi><mo>∈</mo><mi>R</mi></math></span> and upper dimension bounds by <span><math><mi>N</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, namely the timelike curvature-dimension conditions <span><math><msub><mrow><mi>TCD</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>TCD</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> in weak and strong forms, where <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, and the timelike measure-contraction properties <span><math><mrow><mi>TMCP</mi></mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>TMCP</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span>. These are formulated by convexity properties of the Rényi entropy with respect to <span><math><mi>m</mi></math></span> along <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-geodesics of probability measures.</p><p>We show many features of these notions, including their compatibility with the smooth setting, sharp geometric inequalities, stability, equivalence of the named weak and strong versions, local-to-global properties, and uniqueness of chronological <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-optimal couplings and chronological <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-geodesics. We also prove the equivalence of <span><math><msubsup><mrow><mi>TCD</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>TMCP</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> to their respective entropic counterparts in the sense of Cavalletti and Mondino.</p><p>Some of these results are obtained under timelike <em>p</em>-essential nonbranching, a concept which is a priori weaker than timelike nonbranching.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8
Abstract
For a Lorentzian space measured by in the sense of Kunzinger, Sämann, Cavalletti, and Mondino, we introduce and study synthetic notions of timelike lower Ricci curvature bounds by and upper dimension bounds by , namely the timelike curvature-dimension conditions and in weak and strong forms, where , and the timelike measure-contraction properties and . These are formulated by convexity properties of the Rényi entropy with respect to along -geodesics of probability measures.
We show many features of these notions, including their compatibility with the smooth setting, sharp geometric inequalities, stability, equivalence of the named weak and strong versions, local-to-global properties, and uniqueness of chronological -optimal couplings and chronological -geodesics. We also prove the equivalence of and to their respective entropic counterparts in the sense of Cavalletti and Mondino.
Some of these results are obtained under timelike p-essential nonbranching, a concept which is a priori weaker than timelike nonbranching.