Unsupervised machine learning for project stakeholder classification: Benefits and limitations

Costanza Mariani, Yuliya Navrotska, Mauro Mancini
{"title":"Unsupervised machine learning for project stakeholder classification: Benefits and limitations","authors":"Costanza Mariani,&nbsp;Yuliya Navrotska,&nbsp;Mauro Mancini","doi":"10.1016/j.plas.2023.100093","DOIUrl":null,"url":null,"abstract":"<div><p>The literature has shown that an accurate classification of project stakeholders allows for more comprehensive planning of their management strategies. The most used classification methods have limitations stemming from using a small number of stakeholder attributes thus returning high-level and imprecise classification results. This work investigates the potential benefits and limitations of adopting unsupervised machine learning clustering as an alternative method to automatically recognize stakeholder groups. The paper demonstrates the application of a PAM algorithm for project stakeholder classification, employing qualitative and quantitative data collected from a real project in an IT Italian company. The results show that the use of unsupervised clustering leads to a more granular and detailed stakeholder grouping that enables the design of better refined and customized stakeholder management strategies. Furthermore, the results of the paper demonstrate that the use of this methodology, when data is taken from a structured dataset, reduces the degree of subjectivity in classification, promoting a data-driven approach to project stakeholder management.</p></div>","PeriodicalId":101050,"journal":{"name":"Project Leadership and Society","volume":"4 ","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Project Leadership and Society","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666721523000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The literature has shown that an accurate classification of project stakeholders allows for more comprehensive planning of their management strategies. The most used classification methods have limitations stemming from using a small number of stakeholder attributes thus returning high-level and imprecise classification results. This work investigates the potential benefits and limitations of adopting unsupervised machine learning clustering as an alternative method to automatically recognize stakeholder groups. The paper demonstrates the application of a PAM algorithm for project stakeholder classification, employing qualitative and quantitative data collected from a real project in an IT Italian company. The results show that the use of unsupervised clustering leads to a more granular and detailed stakeholder grouping that enables the design of better refined and customized stakeholder management strategies. Furthermore, the results of the paper demonstrate that the use of this methodology, when data is taken from a structured dataset, reduces the degree of subjectivity in classification, promoting a data-driven approach to project stakeholder management.

用于项目干系人分类的无监督机器学习:优点和局限性
文献表明,项目干系人的准确分类允许对其管理策略进行更全面的规划。最常用的分类方法由于使用少量涉众属性而产生限制,从而返回高级和不精确的分类结果。这项工作调查了采用无监督机器学习聚类作为自动识别利益相关者群体的替代方法的潜在好处和局限性。本文通过对意大利一家IT公司的实际项目进行定性和定量分析,论证了PAM算法在项目干系人分类中的应用。结果表明,无监督聚类的使用导致更细粒度和详细的利益相关者分组,从而能够设计更好的细化和定制的利益相关者管理策略。此外,本文的结果表明,当数据来自结构化数据集时,使用这种方法降低了分类的主观性,促进了数据驱动的项目利益相关者管理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信