A candidate exchange-biased vdW heterostructure based on Cr2NO2 and Cr2CF2 MXenes

R. Ponce-Perez , J. Guerrero-Sanchez , S.J. Gutierrez-Ojeda , H.N. Fernandez-Escamilla , D.M. Hoat , Ma.G. Moreno-Armenta
{"title":"A candidate exchange-biased vdW heterostructure based on Cr2NO2 and Cr2CF2 MXenes","authors":"R. Ponce-Perez ,&nbsp;J. Guerrero-Sanchez ,&nbsp;S.J. Gutierrez-Ojeda ,&nbsp;H.N. Fernandez-Escamilla ,&nbsp;D.M. Hoat ,&nbsp;Ma.G. Moreno-Armenta","doi":"10.1016/j.mtelec.2023.100059","DOIUrl":null,"url":null,"abstract":"<div><p>We investigated the van der Waals heterostructure Cr<sub>2</sub>NO<sub>2</sub>/Cr<sub>2</sub>CF<sub>2</sub> by spin-polarized first-principles calculations. The aim is to create two-dimensional ferromagnetic/antiferromagnetic heterostructures where the exchange bias effect can occur. Cr<sub>2</sub>NO<sub>2</sub> MXene is a half-metal ferromagnetic material, while Cr<sub>2</sub>CF<sub>2</sub> MXene is an antiferromagnetic semiconductor. The lattice mismatch of both MXenes is ∼4%, good enough to construct the heterostructure. Three different stackings were considered in the heterostructure: H3, T4, and Top. Also, three different cell parameters are considered: larger lattice constant a(Cr<sub>2</sub>CF<sub>2</sub>), shorter lattice constant a(Cr<sub>2</sub>NO<sub>2</sub>), and both relaxed. In all cases, T4 staking is the most favorable interaction configuration. Non-covalent interactions show that van der Waals forces dominate in the heterostructure. Also, the average electrostatic potential along the z-axis explains the stability in the T4 stacking. Antiferromagnetic coupling is the most stable when fixing a(Cr<sub>2</sub>CF<sub>2</sub>) as the heterostructure lattice parameter, while for the short lattice constant, a(Cr<sub>2</sub>NO<sub>2</sub>), the magnetic coupling becomes Ferromagnetic. Band diagrams evidence that both MXenes preserve their electronic properties after the interaction, so the antiferromagnetic alignment is intrinsic in the heterostructure for the larger lattice constant. Our theoretical findings open the door to consider the versatile MXenes as promising candidates for the new generation of information storage nanodevices.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"6 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the van der Waals heterostructure Cr2NO2/Cr2CF2 by spin-polarized first-principles calculations. The aim is to create two-dimensional ferromagnetic/antiferromagnetic heterostructures where the exchange bias effect can occur. Cr2NO2 MXene is a half-metal ferromagnetic material, while Cr2CF2 MXene is an antiferromagnetic semiconductor. The lattice mismatch of both MXenes is ∼4%, good enough to construct the heterostructure. Three different stackings were considered in the heterostructure: H3, T4, and Top. Also, three different cell parameters are considered: larger lattice constant a(Cr2CF2), shorter lattice constant a(Cr2NO2), and both relaxed. In all cases, T4 staking is the most favorable interaction configuration. Non-covalent interactions show that van der Waals forces dominate in the heterostructure. Also, the average electrostatic potential along the z-axis explains the stability in the T4 stacking. Antiferromagnetic coupling is the most stable when fixing a(Cr2CF2) as the heterostructure lattice parameter, while for the short lattice constant, a(Cr2NO2), the magnetic coupling becomes Ferromagnetic. Band diagrams evidence that both MXenes preserve their electronic properties after the interaction, so the antiferromagnetic alignment is intrinsic in the heterostructure for the larger lattice constant. Our theoretical findings open the door to consider the versatile MXenes as promising candidates for the new generation of information storage nanodevices.

Abstract Image

基于Cr2NO2和Cr2CF2 MXenes的候选交换偏置vdW异质结构
利用自旋极化第一性原理计算研究了Cr2NO2/Cr2CF2的范德华异质结构。目的是创建二维铁磁/反铁磁异质结构,其中可以发生交换偏置效应。Cr2NO2 MXene是半金属铁磁性材料,而Cr2CF2 MXene是反铁磁性半导体。两种MXenes的晶格失配为~ 4%,足以构建异质结构。异质结构中考虑了三种不同的堆叠:H3、T4和Top。此外,还考虑了三种不同的单元参数:较大的晶格常数a(Cr2CF2),较短的晶格常数a(Cr2NO2),两者都是松弛的。在所有情况下,T4赌注是最有利的交互配置。非共价相互作用表明,范德华力在异质结构中占主导地位。此外,沿z轴的平均静电势解释了T4堆叠的稳定性。当固定a(Cr2CF2)为异质结构晶格参数时,反铁磁耦合最稳定,而当固定a(Cr2NO2)为短晶格常数时,磁性耦合变为铁磁耦合。带图表明两种MXenes在相互作用后都保持了它们的电子性质,因此在较大晶格常数的异质结构中,反铁磁排列是固有的。我们的理论发现为考虑多功能MXenes作为新一代信息存储纳米器件的有希望的候选者打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信