{"title":"High-performance printed electrode with rapid fabrication based on UV and IPL light processes without thermal treatment","authors":"Hyun Jin Nam , Se-Hoon Park , Jong-Hyun Lee","doi":"10.1016/j.porgcoat.2023.107497","DOIUrl":null,"url":null,"abstract":"<div><p>We developed flexible and ultraviolet (UV)-curable electrodes with improved electrical conductivity using two light processes. Existing microparticle electrodes have poor durability. In this study, we improved electrode durability by facilitating UV light transmission using nanosilver particles and increased electrical conductivity using the photonic sintering process as a posttreatment process. The formulation of the UV-curable nanosilver paste developed this way had no problem in the cross-cut tape test and showed excellent pencil hardness (>3H). Furthermore, the electrical resistivity was 2.76 × 10<sup>−5</sup> Ω·cm, and the resistance change rate was <1 % even after 50,000 times of repetitive tests with a 3-mm radius of curvature. When twelve electrode patterns with LED installation and bent were manufactured, we confirmed that there was no change in brightness. Finally, as polyethylene terephtalate, a low-temperature substrate, was not damaged even after the process was completed, the paste and process showed sufficient performance even in the low-temperature process.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"178 ","pages":"Article 107497"},"PeriodicalIF":7.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944023000930","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We developed flexible and ultraviolet (UV)-curable electrodes with improved electrical conductivity using two light processes. Existing microparticle electrodes have poor durability. In this study, we improved electrode durability by facilitating UV light transmission using nanosilver particles and increased electrical conductivity using the photonic sintering process as a posttreatment process. The formulation of the UV-curable nanosilver paste developed this way had no problem in the cross-cut tape test and showed excellent pencil hardness (>3H). Furthermore, the electrical resistivity was 2.76 × 10−5 Ω·cm, and the resistance change rate was <1 % even after 50,000 times of repetitive tests with a 3-mm radius of curvature. When twelve electrode patterns with LED installation and bent were manufactured, we confirmed that there was no change in brightness. Finally, as polyethylene terephtalate, a low-temperature substrate, was not damaged even after the process was completed, the paste and process showed sufficient performance even in the low-temperature process.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.