{"title":"Lentil protein concentrate + pectin gels dried with SC-CO2: Influence of protein-polysaccharide interactions on the characteristics of aerogels","authors":"Srujana Mekala, Marleny D.A. Saldaña","doi":"10.1016/j.supflu.2023.106006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>This study investigated the interactions of lentil protein concentrate (LPC) and pectin hydrogels and their influence on the physico-chemical characteristics of aerogels. First, emulsion gels were formed using high-intensity ultrasound (HIUS) and the impact of HIUS nominal power, and concentrations of LPC and pectin on the </span>gelation were evaluated. Then, the emulsion gels were dried using </span>supercritical CO</span><sub>2</sub> (SC-CO<sub>2</sub><span>) and the density, surface area, crystallinity<span> index, microstructure and oil and water absorption capacities of the aerogels formed were evaluated. Overall, there was no significant effect of HIUS power on the viscoelastic behavior of the emulsion gels. The emulsion gels exhibited shear-thinning behavior and had thermo-reversible property. The FT-IR spectra of the aerogels showed predominant β-sheets, responsible for the non-covalent bond formation. The aerogels had semi-crystalline structure, densities of 0.0009–0.003 g/mm</span></span><sup>3</sup> and surface area of 2.4–7.6 m<sup>2</sup>/g. The LPC-pectin interactions can be explored to form tailor-made aerogels for bioactive delivery.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"201 ","pages":"Article 106006"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844623001705","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the interactions of lentil protein concentrate (LPC) and pectin hydrogels and their influence on the physico-chemical characteristics of aerogels. First, emulsion gels were formed using high-intensity ultrasound (HIUS) and the impact of HIUS nominal power, and concentrations of LPC and pectin on the gelation were evaluated. Then, the emulsion gels were dried using supercritical CO2 (SC-CO2) and the density, surface area, crystallinity index, microstructure and oil and water absorption capacities of the aerogels formed were evaluated. Overall, there was no significant effect of HIUS power on the viscoelastic behavior of the emulsion gels. The emulsion gels exhibited shear-thinning behavior and had thermo-reversible property. The FT-IR spectra of the aerogels showed predominant β-sheets, responsible for the non-covalent bond formation. The aerogels had semi-crystalline structure, densities of 0.0009–0.003 g/mm3 and surface area of 2.4–7.6 m2/g. The LPC-pectin interactions can be explored to form tailor-made aerogels for bioactive delivery.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.