Xiaohong Hu , Weiwei Jin , Haitao Zhang , Qinyu Qing , Juan Pang
{"title":"Development of visible-light driven photo-switching copolymers with pH indicating performance","authors":"Xiaohong Hu , Weiwei Jin , Haitao Zhang , Qinyu Qing , Juan Pang","doi":"10.1080/1023666X.2023.2202974","DOIUrl":null,"url":null,"abstract":"<div><p>Visible-light-driven azobenzene had been reported by theoretical calculation, but could not be detected by any characterization method due to unstable cis structure. Herein, copolymerization was applied to solve the problem based on a time-dependent characteristic of macromolecular motion. Therefore, two copolymers, namely, MRAA-PEG<sub>20</sub> copolymer and MRAA-NIPAM copolymer, were synthesized with a definite segment ratio. Both copolymers had photosensitive groups, which were confirmed by UV-vis spectra. Furthermore, copolymer concentration had a linear relationship with absorbance value at 425 nm. Firstly, blue light as an excitation source to induce the isomerization of copolymers. At the same time, repeated interval irradiation was used to evaluate the fatigue performance of the copolymer. Consequently, both copolymers could quickly transform to their cis isomers upon irradiation, which could be reversible recovered to their trans isomers in operable recovery time after removing irradiation. However, the MRAA-PEG<sub>20</sub> copolymer had an obvious photobleaching phenomenon along with the circle index, which did not exist in the MRAA-NIPAM copolymer. Secondly, the effects of excitation light source on isomerization were investigated. It was found that blue light was the most efficient excitation source for both copolymers though other light could also induce trans-to-cis transition. Thirdly, the influence of light intensity and temperature was respectively studied. With increasing of light intensity, the absorbance ratio before and after irradiation monotonously decreased, the irradiation response time shortened and the recovery response time prolonged. Moreover, higher temperature resulted in a higher absorbance ratio, shorter irradiation response time, and shorter recovery response time. Finally, synthesized copolymers had characteristic of pH indicator with a critical point of pH 5.0.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X23000355","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Visible-light-driven azobenzene had been reported by theoretical calculation, but could not be detected by any characterization method due to unstable cis structure. Herein, copolymerization was applied to solve the problem based on a time-dependent characteristic of macromolecular motion. Therefore, two copolymers, namely, MRAA-PEG20 copolymer and MRAA-NIPAM copolymer, were synthesized with a definite segment ratio. Both copolymers had photosensitive groups, which were confirmed by UV-vis spectra. Furthermore, copolymer concentration had a linear relationship with absorbance value at 425 nm. Firstly, blue light as an excitation source to induce the isomerization of copolymers. At the same time, repeated interval irradiation was used to evaluate the fatigue performance of the copolymer. Consequently, both copolymers could quickly transform to their cis isomers upon irradiation, which could be reversible recovered to their trans isomers in operable recovery time after removing irradiation. However, the MRAA-PEG20 copolymer had an obvious photobleaching phenomenon along with the circle index, which did not exist in the MRAA-NIPAM copolymer. Secondly, the effects of excitation light source on isomerization were investigated. It was found that blue light was the most efficient excitation source for both copolymers though other light could also induce trans-to-cis transition. Thirdly, the influence of light intensity and temperature was respectively studied. With increasing of light intensity, the absorbance ratio before and after irradiation monotonously decreased, the irradiation response time shortened and the recovery response time prolonged. Moreover, higher temperature resulted in a higher absorbance ratio, shorter irradiation response time, and shorter recovery response time. Finally, synthesized copolymers had characteristic of pH indicator with a critical point of pH 5.0.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.