Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries

IF 42.9 Q1 ELECTROCHEMISTRY
Jiahang Chen , Yang Zhang , Huichao Lu , Juan Ding , Xingchao Wang , Yudai Huang , Huiyang Ma , Jiulin Wang
{"title":"Electrolyte solvation chemistry to construct an anion-tuned interphase for stable high-temperature lithium metal batteries","authors":"Jiahang Chen ,&nbsp;Yang Zhang ,&nbsp;Huichao Lu ,&nbsp;Juan Ding ,&nbsp;Xingchao Wang ,&nbsp;Yudai Huang ,&nbsp;Huiyang Ma ,&nbsp;Jiulin Wang","doi":"10.1016/j.esci.2023.100135","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium metal batteries are regarded as promising alternative next-generation energy storage systems. However, the unstable anode interphase results in dendrite growth and irreversible lithium consumption with low Coulombic efficiency (CE). Herein, we rationally design a Li<sup>+</sup> coordination structure via electrolyte solvation chemistry. Nitrate anions are aggregated in the solvation sheath, even at low concentration in a solvent with moderate solvation ability, which promotes Li<sup>+</sup> desolvation and constructs a nitrate anion-tuned interphase. Meanwhile, a high-donor-number solvent is introduced as an additive to strongly coordinate with Li<sup>+</sup>, which accelerates the ion-transfer kinetics and rate performance. This not only results in micro-sized lithium deposition and a high CE of 99.5% over 3500 ​h, but also enables superior anode stability even under 50% depth plating/stripping and with a lean electrolyte of 3 ​g ​Ah<sup>−1</sup> at 50 ​°C. A lithium–sulfur battery exhibits a prolonged lifespan of 2000 cycles with an average CE of 100%. A full battery using 1x excess lithium exhibits a high capacity near 1600 ​mAh ​g<sub>S</sub><sup>−1</sup> for 100 cycles without capacity loss. Moreover, a 0.55 ​Ah pouch cell delivers a reversible energy density of 423 ​Wh ​kg<sup>−1</sup> based on these electrodes and electrolyte.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 4","pages":"Article 100135"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2

Abstract

Lithium metal batteries are regarded as promising alternative next-generation energy storage systems. However, the unstable anode interphase results in dendrite growth and irreversible lithium consumption with low Coulombic efficiency (CE). Herein, we rationally design a Li+ coordination structure via electrolyte solvation chemistry. Nitrate anions are aggregated in the solvation sheath, even at low concentration in a solvent with moderate solvation ability, which promotes Li+ desolvation and constructs a nitrate anion-tuned interphase. Meanwhile, a high-donor-number solvent is introduced as an additive to strongly coordinate with Li+, which accelerates the ion-transfer kinetics and rate performance. This not only results in micro-sized lithium deposition and a high CE of 99.5% over 3500 ​h, but also enables superior anode stability even under 50% depth plating/stripping and with a lean electrolyte of 3 ​g ​Ah−1 at 50 ​°C. A lithium–sulfur battery exhibits a prolonged lifespan of 2000 cycles with an average CE of 100%. A full battery using 1x excess lithium exhibits a high capacity near 1600 ​mAh ​gS−1 for 100 cycles without capacity loss. Moreover, a 0.55 ​Ah pouch cell delivers a reversible energy density of 423 ​Wh ​kg−1 based on these electrodes and electrolyte.

Abstract Image

构建稳定高温锂金属电池阴离子调谐界面相的电解质溶剂化化学
锂金属电池被认为是有前途的下一代储能系统。然而,不稳定的阳极界面导致枝晶生长和不可逆的锂消耗,且库仑效率(CE)低。在此,我们通过电解质溶剂化化学合理地设计了Li+配位结构。在中等溶剂化能力的溶剂中,即使在低浓度下,硝酸盐阴离子也会聚集在溶剂鞘中,促进Li+的脱溶,构建硝酸盐阴离子调质间相。同时,引入高给体数溶剂作为添加剂,与Li+强配位,加快了离子转移动力学和速率性能。这不仅导致了微尺寸的锂沉积和在3500小时内99.5%的高CE,而且在50°C下,即使在50%深度电镀/剥离和3 g Ah−1的稀薄电解质下,也能实现卓越的阳极稳定性。锂硫电池的寿命延长至2000次循环,平均CE为100%。使用1倍多余锂的完整电池在100次循环中具有接近1600 mAh gS−1的高容量,而不会出现容量损失。此外,基于这些电极和电解质,0.55 Ah的袋状电池可提供423 Wh kg−1的可逆能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信