In situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode

IF 42.9 Q1 ELECTROCHEMISTRY
Kaixuan Xie , Kaixin Ren , Qinghong Wang , Yuxiao Lin , Fengcan Ma , Chuang Sun , Yinwei Li , Xinsheng Zhao , Chao Lai
{"title":"In situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode","authors":"Kaixuan Xie ,&nbsp;Kaixin Ren ,&nbsp;Qinghong Wang ,&nbsp;Yuxiao Lin ,&nbsp;Fengcan Ma ,&nbsp;Chuang Sun ,&nbsp;Yinwei Li ,&nbsp;Xinsheng Zhao ,&nbsp;Chao Lai","doi":"10.1016/j.esci.2023.100153","DOIUrl":null,"url":null,"abstract":"<div><p>With their excellent reliability and environmental friendliness, zinc-ion batteries (ZIBs) are regarded as potential energy storage technologies. Unfortunately, their poor cycling durability and low Coulombic effectiveness (CE), driven by dendritic growth and surface passivation on the Zn anode, severely restrict their commercialization. Herein, we describe the <em>in situ</em> construction of a Zn-rich polymeric solid–electrolyte interface (SEI) using polyacrylic acid (PAA) as an electrolyte additive. On the one hand, the PAA SEI layer offers evenly distributed nucleation sites and promotes ion transport, hence suppressing dendrite growth. On the other hand, the SEI layer prevents direct contact between the Zn foil and the electrolyte, thus inhibiting side reactions. Additionally, the robust coordination of PAA with Zn<sup>2+</sup> and the SEI layer's good adherence to the Zn foil provide long-term protection to the Zn anode. As a result, symmetric cells and Zn/V<sub>2</sub>O<sub>5</sub> cells all deliver prolonged cycle life and superior electrochemical efficiency.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 4","pages":"Article 100153"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 11

Abstract

With their excellent reliability and environmental friendliness, zinc-ion batteries (ZIBs) are regarded as potential energy storage technologies. Unfortunately, their poor cycling durability and low Coulombic effectiveness (CE), driven by dendritic growth and surface passivation on the Zn anode, severely restrict their commercialization. Herein, we describe the in situ construction of a Zn-rich polymeric solid–electrolyte interface (SEI) using polyacrylic acid (PAA) as an electrolyte additive. On the one hand, the PAA SEI layer offers evenly distributed nucleation sites and promotes ion transport, hence suppressing dendrite growth. On the other hand, the SEI layer prevents direct contact between the Zn foil and the electrolyte, thus inhibiting side reactions. Additionally, the robust coordination of PAA with Zn2+ and the SEI layer's good adherence to the Zn foil provide long-term protection to the Zn anode. As a result, symmetric cells and Zn/V2O5 cells all deliver prolonged cycle life and superior electrochemical efficiency.

Abstract Image

高性能锌阳极用富锌聚合物固电解质界面的原位构建
锌离子电池以其优异的可靠性和环境友好性,被认为是一种有潜力的储能技术。不幸的是,由于锌阳极的枝晶生长和表面钝化,它们的循环耐久性差,库仑效率(CE)低,严重限制了它们的商业化。在这里,我们描述了用聚丙烯酸(PAA)作为电解质添加剂原位构建富锌聚合物固体电解质界面(SEI)。一方面,PAA SEI层提供了均匀分布的成核位点,促进了离子的运输,从而抑制了枝晶的生长。另一方面,SEI层防止了锌箔和电解质之间的直接接触,从而抑制了副反应。此外,PAA与Zn2+的良好配位以及SEI层与Zn箔的良好粘附性为Zn阳极提供了长期保护。因此,对称电池和Zn/V2O5电池都具有较长的循环寿命和优异的电化学效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
文献相关原料
公司名称
产品信息
百灵威
V2O5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信