Computational estimation of chemical reaction rates in extracellular vesicle signaling

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Martin Damrath , Mohammad Zoofaghari , Milica Lekić , Hamid Khoshfekr Rudsari , Fabrizio Pappalardo , Mladen Veletić , Ilangko Balasingham
{"title":"Computational estimation of chemical reaction rates in extracellular vesicle signaling","authors":"Martin Damrath ,&nbsp;Mohammad Zoofaghari ,&nbsp;Milica Lekić ,&nbsp;Hamid Khoshfekr Rudsari ,&nbsp;Fabrizio Pappalardo ,&nbsp;Mladen Veletić ,&nbsp;Ilangko Balasingham","doi":"10.1016/j.nancom.2023.100455","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The rates of chemical reactions involved in cell-to-cell communication can serve as a powerful tool for advanced theranostics and in establishing a molecular communication link between bio-transceivers. Reaction rates are usually experimentally measured by quantifying chemical products, which is challenging when several signal transduction mechanisms are involved in the signaling pathway. Without loss of generality, we focus on extracellular vesicle (EV) cell-to-cell signaling and propose a computational method to estimate the </span>chemical reaction rates<span> which characterize a process by which EVs are taken by cells. The method is based on measuring only the time-course of environmental EVs, and eliminates the need to measure either bound or internalized EVs which is usually essential for experimental evaluation of the rates by using advanced molecular imaging modalities<span><span>. As an alternative to a proposed approximation<span> by a linear system model, our computation exploits a nonlinear system model in which the impact of limited </span></span>receptor sites<span> on the recipient cell membrane is incorporated. The reaction rates are obtained through a suggested linear and iterative approach as well as a novel way of applying Michaelis–Menten kinetics in the frequency domain. The range of validity of each technique is evaluated by varying the number of free binding sites on the cell membrane in relation to the initial number of environmental EVs. In conclusion, the proposed methods are very effective in assessing the dynamics of the EV uptake using a simple </span></span></span></span><em>in vitro</em> platform.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"37 ","pages":"Article 100455"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000212","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rates of chemical reactions involved in cell-to-cell communication can serve as a powerful tool for advanced theranostics and in establishing a molecular communication link between bio-transceivers. Reaction rates are usually experimentally measured by quantifying chemical products, which is challenging when several signal transduction mechanisms are involved in the signaling pathway. Without loss of generality, we focus on extracellular vesicle (EV) cell-to-cell signaling and propose a computational method to estimate the chemical reaction rates which characterize a process by which EVs are taken by cells. The method is based on measuring only the time-course of environmental EVs, and eliminates the need to measure either bound or internalized EVs which is usually essential for experimental evaluation of the rates by using advanced molecular imaging modalities. As an alternative to a proposed approximation by a linear system model, our computation exploits a nonlinear system model in which the impact of limited receptor sites on the recipient cell membrane is incorporated. The reaction rates are obtained through a suggested linear and iterative approach as well as a novel way of applying Michaelis–Menten kinetics in the frequency domain. The range of validity of each technique is evaluated by varying the number of free binding sites on the cell membrane in relation to the initial number of environmental EVs. In conclusion, the proposed methods are very effective in assessing the dynamics of the EV uptake using a simple in vitro platform.

细胞外囊泡信号传导中化学反应速率的计算估计
细胞间通讯的化学反应速率可以作为先进治疗学的有力工具,并在生物收发器之间建立分子通讯联系。反应速率通常是通过量化化学产物来测量的,当信号通路中涉及多种信号转导机制时,这是具有挑战性的。在不失去一般性的情况下,我们将重点放在细胞外囊泡(EV)细胞间信号传导上,并提出了一种计算方法来估计细胞摄取EV过程的化学反应速率。该方法仅基于测量环境中电动汽车的时间过程,而无需测量结合或内化的电动汽车,这通常是使用先进的分子成像模式进行速率实验评估所必需的。作为线性系统模型提出的近似的替代方案,我们的计算利用了非线性系统模型,其中纳入了有限受体位点对受体细胞膜的影响。通过线性迭代法和Michaelis-Menten动力学在频域的应用,得到了反应速率。每种技术的有效性范围是通过改变细胞膜上的自由结合位点的数量与环境电动汽车的初始数量的关系来评估的。总之,所提出的方法在使用简单的体外平台评估EV摄取动力学方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信