{"title":"A terramechanics model for high slip angle and skid with prediction of wheel-soil interaction geometry","authors":"Catherine Pavlov, Aaron M. Johnson","doi":"10.1016/j.jterra.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Previously developed terramechanics models of wheel-soil interaction forces do not cover the full span of possible wheel states, including large slip angles and ratios. This paper synthesizes a model that covers the full range of slip and skid ratios and slip angles by building on classic terramechanics and soil failure models. The need for wheel and soil specific tuning is reduced through use of a closed-form model of soil flow around the wheel to determine the wheel-soil contact geometry. The terramechanics model is validated both with and without the soil flow model on two wheels in sand for slip ratios from −1 to 0.9 and slip angles from 0<span><math><mrow><mo>°</mo></mrow></math></span> to 60<span><math><mrow><mi>°</mi></mrow></math></span>, showing good prediction of tractive forces, sidewall forces, and sinkage over a wide variety of states. The data from these experiments is also presented, as the only open source data set to cover both a high range of slip angles and slip ratios.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000691","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Previously developed terramechanics models of wheel-soil interaction forces do not cover the full span of possible wheel states, including large slip angles and ratios. This paper synthesizes a model that covers the full range of slip and skid ratios and slip angles by building on classic terramechanics and soil failure models. The need for wheel and soil specific tuning is reduced through use of a closed-form model of soil flow around the wheel to determine the wheel-soil contact geometry. The terramechanics model is validated both with and without the soil flow model on two wheels in sand for slip ratios from −1 to 0.9 and slip angles from 0 to 60, showing good prediction of tractive forces, sidewall forces, and sinkage over a wide variety of states. The data from these experiments is also presented, as the only open source data set to cover both a high range of slip angles and slip ratios.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.