Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface

Zhe Yang , Ziyan Yang , Long Liu , Xin Li , Junze Li , Changying Xiong , Xianliang Mai , Hao Tong , Yi Li , Kan-Hao Xue , Xiaoyong Xue , Ming Xu , Dehui Li , Peng Zhou , Xiangshui Miao
{"title":"Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface","authors":"Zhe Yang ,&nbsp;Ziyan Yang ,&nbsp;Long Liu ,&nbsp;Xin Li ,&nbsp;Junze Li ,&nbsp;Changying Xiong ,&nbsp;Xianliang Mai ,&nbsp;Hao Tong ,&nbsp;Yi Li ,&nbsp;Kan-Hao Xue ,&nbsp;Xiaoyong Xue ,&nbsp;Ming Xu ,&nbsp;Dehui Li ,&nbsp;Peng Zhou ,&nbsp;Xiangshui Miao","doi":"10.1016/j.mtelec.2023.100047","DOIUrl":null,"url":null,"abstract":"<div><p>Anisotropy is an intrinsic property in crystals with low structural symmetry, and such well-textured materials usually show distinct electronic transport and optical properties along different lattice orientations, offering wide applications in electronic and photonic devices. As a typical low-symmetry materials, crystalline GeSe with orthorhombic structure shows large electric and optical anisotropies. In this work, we take advantage of the anisotropic mass transport and filamentary growth of Ag ions on the GeSe surface to fabricate planar memristive devices which show directional memory and transient switching phenomena. The anisotropic switching behaviors stem from the distinct morphology of metallic filaments that are directionally dependent on the mobility of ions, e.g., ions diffusing along the low-barrier direction tend to form stark conductive channels while those with low mobility only entail slim and weak dendrites, which have been clearly observed under electronic microscopy. The functionality could be utilized to mimic various synaptic events, such as long-term memory enabled by stable conductive channels and short-term memory by the spontaneous rupture of weak filaments, all implemented in one physical device. Two integration schemes based on the anisotropic devices are designed and demonstrated for different application scenarios, paving the way for its applications in multifunctional brain-inspired computing systems.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anisotropy is an intrinsic property in crystals with low structural symmetry, and such well-textured materials usually show distinct electronic transport and optical properties along different lattice orientations, offering wide applications in electronic and photonic devices. As a typical low-symmetry materials, crystalline GeSe with orthorhombic structure shows large electric and optical anisotropies. In this work, we take advantage of the anisotropic mass transport and filamentary growth of Ag ions on the GeSe surface to fabricate planar memristive devices which show directional memory and transient switching phenomena. The anisotropic switching behaviors stem from the distinct morphology of metallic filaments that are directionally dependent on the mobility of ions, e.g., ions diffusing along the low-barrier direction tend to form stark conductive channels while those with low mobility only entail slim and weak dendrites, which have been clearly observed under electronic microscopy. The functionality could be utilized to mimic various synaptic events, such as long-term memory enabled by stable conductive channels and short-term memory by the spontaneous rupture of weak filaments, all implemented in one physical device. Two integration schemes based on the anisotropic devices are designed and demonstrated for different application scenarios, paving the way for its applications in multifunctional brain-inspired computing systems.

Abstract Image

各向异性质量输运使二维材料表面的突触行为明显不同
各向异性是低结构对称性晶体的固有性质,这种结构良好的材料通常沿不同晶格方向表现出不同的电子输运和光学性质,在电子和光子器件中具有广泛的应用。作为一种典型的低对称性材料,具有正交结构的晶体GeSe具有较大的电学和光学各向异性。在这项工作中,我们利用了各向异性的质量输运和Ag离子在GeSe表面的长丝生长来制造具有定向记忆和瞬态开关现象的平面记忆器件。各向异性开关行为源于金属细丝的不同形态,其方向依赖于离子的迁移率,例如,沿着低势垒方向扩散的离子往往形成坚硬的导电通道,而低迁移率方向的离子仅形成细而弱的枝晶,这在电子显微镜下已被清楚地观察到。该功能可用于模拟各种突触事件,例如通过稳定的导电通道实现的长期记忆和通过弱丝自发断裂实现的短期记忆,所有这些都在一个物理设备中实现。针对不同的应用场景,设计并演示了两种基于各向异性器件的集成方案,为其在多功能脑启发计算系统中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信