Joanna Ludwiczak , Anna Dmitruk , Mateusz Skwarski , Paweł Kaczyński , Piotr Makuła
{"title":"UV resistance and biodegradation of PLA-based polymeric blends doped with PBS, PBAT, TPS","authors":"Joanna Ludwiczak , Anna Dmitruk , Mateusz Skwarski , Paweł Kaczyński , Piotr Makuła","doi":"10.1080/1023666X.2023.2218696","DOIUrl":null,"url":null,"abstract":"<div><p>The design of new biodegradable polymers is important for solving the fossil resource and environmental pollution problems associated with conventional plastics. New PLA-based mixtures with the addition of PBAT, PBS and TPS, with different contents, were prepared to investigate their behavior after accelerated aging, as well as their potential for the biodegradation process. Their mechanical properties, mass, hardness, morphology, gloss and color change during UV irradiation progress, have been investigated. The samples were exposed to UV radiation for 21 d, their accelerated aging properties, were assessed weekly and compared with the non-aged samples. The degree of disintegration was determined after soil burial. The results showed that the mechanical properties, especially formability, as well as gloss and color, changed significantly after accelerated aging. All tested matrices are degradable, as shown by soil burial tests. Testing the stability of the functional properties of biodegradable plastics, which are assessed by end users, is important for the wider use of these plastics.</p></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X23000574","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The design of new biodegradable polymers is important for solving the fossil resource and environmental pollution problems associated with conventional plastics. New PLA-based mixtures with the addition of PBAT, PBS and TPS, with different contents, were prepared to investigate their behavior after accelerated aging, as well as their potential for the biodegradation process. Their mechanical properties, mass, hardness, morphology, gloss and color change during UV irradiation progress, have been investigated. The samples were exposed to UV radiation for 21 d, their accelerated aging properties, were assessed weekly and compared with the non-aged samples. The degree of disintegration was determined after soil burial. The results showed that the mechanical properties, especially formability, as well as gloss and color, changed significantly after accelerated aging. All tested matrices are degradable, as shown by soil burial tests. Testing the stability of the functional properties of biodegradable plastics, which are assessed by end users, is important for the wider use of these plastics.
期刊介绍:
The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization:
Characterization and analysis of new and existing polymers and polymeric-based materials.
Design and evaluation of analytical instrumentation and physical testing equipment.
Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution.
Using separation, spectroscopic, and scattering techniques.
Surface characterization of polymeric materials.
Measurement of solution and bulk properties and behavior of polymers.
Studies involving structure-property-processing relationships, and polymer aging.
Analysis of oligomeric materials.
Analysis of polymer additives and decomposition products.