Bismarck Dinko , Dennis Awuah , Kwadwo Boampong , John A. Larbi , Teun Bousema , Colin J. Sutherland
{"title":"Prevalence of Plasmodium falciparum gametocytaemia in asymptomatic school children before and after treatment with dihydroartemisinin-piperaquine (DP)","authors":"Bismarck Dinko , Dennis Awuah , Kwadwo Boampong , John A. Larbi , Teun Bousema , Colin J. Sutherland","doi":"10.1016/j.parepi.2023.e00292","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Asymptomatic Plasmodium carriers form the majority of malaria-infected individuals in most endemic areas. A proportion of these asymptomatically infected individuals carry gametocytes, the transmissible stages of malaria parasites, that sustain human to mosquito transmission. Few studies examine gametocytaemia in asymptomatic school children who may form an important reservoir for transmission. We assessed the prevalence of gametocytaemia before antimalarial treatment and monitored clearance of gametocytes after treatment in asymptomatic malaria children.</p></div><div><h3>Methods</h3><p>A total of 274 primary school children were screened for <em>P. falciparum</em> parasitaemia by microscopy. One hundred and fifty-five (155) parasite positive children were treated under direct observation with dihydroartemisinin-piperaquine (DP). Gametocyte carriage was determined by microscopy seven days prior to treatment, day 0 before treatment, and on days 7, 14 and 21 post initiation of treatment.</p></div><div><h3>Results</h3><p>The prevalence of microscopically-detectable gametocytes at screening (day −7) and enrolment (day 0) were 9% (25/274) and 13.6% (21/155) respectively. Following DP treatment, gametocyte carriage dropped to 4% (6/135), 3% (5/135) and 6% (10/151) on days 7, 14 and 21 respectively. Asexual parasites persisted in a minority of treated children, resulting in microscopically detectable parasites on days 7 (9%, 12/135), 14 (4%, 5/135) and 21 (7%, 10/151). Gametocyte carriage was inversely correlated with the age of the participants (<em>p</em> = 0.05) and asexual parasite density (<em>p</em> = 0.08). In a variate analysis, persistent gametocytaemia 7 or more days after treatment was significantly associated with post-treatment asexual parasitaemia at day 7 (<em>P</em> = 0.027) and presence of gametocytes on the day of treatment (<em>P</em> < 0.001).</p></div><div><h3>Conclusions</h3><p>Though DP provides both excellent cure rates for clinical malaria and a long prophylactic half-life, our findings suggest that after treatment of asymptomatic infections, both asexual parasites and gametocytes may persist in a minority of individuals during the first 3 weeks after treatment. This indicates DP may be unsuitable for use in mass drug administration strategies towards malaria elimination in Africa.</p></div>","PeriodicalId":37873,"journal":{"name":"Parasite Epidemiology and Control","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasite Epidemiology and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405673123000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Asymptomatic Plasmodium carriers form the majority of malaria-infected individuals in most endemic areas. A proportion of these asymptomatically infected individuals carry gametocytes, the transmissible stages of malaria parasites, that sustain human to mosquito transmission. Few studies examine gametocytaemia in asymptomatic school children who may form an important reservoir for transmission. We assessed the prevalence of gametocytaemia before antimalarial treatment and monitored clearance of gametocytes after treatment in asymptomatic malaria children.
Methods
A total of 274 primary school children were screened for P. falciparum parasitaemia by microscopy. One hundred and fifty-five (155) parasite positive children were treated under direct observation with dihydroartemisinin-piperaquine (DP). Gametocyte carriage was determined by microscopy seven days prior to treatment, day 0 before treatment, and on days 7, 14 and 21 post initiation of treatment.
Results
The prevalence of microscopically-detectable gametocytes at screening (day −7) and enrolment (day 0) were 9% (25/274) and 13.6% (21/155) respectively. Following DP treatment, gametocyte carriage dropped to 4% (6/135), 3% (5/135) and 6% (10/151) on days 7, 14 and 21 respectively. Asexual parasites persisted in a minority of treated children, resulting in microscopically detectable parasites on days 7 (9%, 12/135), 14 (4%, 5/135) and 21 (7%, 10/151). Gametocyte carriage was inversely correlated with the age of the participants (p = 0.05) and asexual parasite density (p = 0.08). In a variate analysis, persistent gametocytaemia 7 or more days after treatment was significantly associated with post-treatment asexual parasitaemia at day 7 (P = 0.027) and presence of gametocytes on the day of treatment (P < 0.001).
Conclusions
Though DP provides both excellent cure rates for clinical malaria and a long prophylactic half-life, our findings suggest that after treatment of asymptomatic infections, both asexual parasites and gametocytes may persist in a minority of individuals during the first 3 weeks after treatment. This indicates DP may be unsuitable for use in mass drug administration strategies towards malaria elimination in Africa.
期刊介绍:
Parasite Epidemiology and Control is an Open Access journal. There is an increasing amount of research in the parasitology area that analyses the patterns, causes, and effects of health and disease conditions in defined populations. This epidemiology of parasite infectious diseases is predominantly studied in human populations but also spans other major hosts of parasitic infections and as such this journal will have a broad remit. We will focus on the major areas of epidemiological study including disease etiology, disease surveillance, drug resistance and geographical spread and screening, biomonitoring, and comparisons of treatment effects in clinical trials for both human and other animals. We will also look at the epidemiology and control of vector insects. The journal will also cover the use of geographic information systems (Epi-GIS) for epidemiological surveillance which is a rapidly growing area of research in infectious diseases. Molecular epidemiological approaches are also particularly encouraged.