In-phase and anti-phase bursting dynamics and synchronisation scenario in neural network by varying coupling phase

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Thazhathethil Remi, Pallimanhiyil Abdulraheem Subha
{"title":"In-phase and anti-phase bursting dynamics and synchronisation scenario in neural network by varying coupling phase","authors":"Thazhathethil Remi,&nbsp;Pallimanhiyil Abdulraheem Subha","doi":"10.1007/s10867-023-09635-1","DOIUrl":null,"url":null,"abstract":"<div><p>We have analysed the synchronisation scenario and the rich spatiotemporal patterns in the network of Hindmarsh-Rose neurons under the influence of self, mixed and cross coupling of state variables which are realised by varying coupling phase. We have introduced a coupling matrix in the model to vary coupling phase. The excitatory and inhibitory couplings in the membrane potential induce in-phase and anti-phase bursting dynamics, respectively, in the two coupled system. When the off-diagonal elements of the matrix are zero, the system shows self coupling of the three variables, which helps to attain synchrony. The off-diagonal elements give cross interactions between the variables, which reduces synchrony. The stability of the synchrony attained is analysed using Lyapunov function approach. In our study, we found that self coupling in three variables is sufficient to induce chimera states in non-local coupling. The strength of incoherence and discontinuity measure validates the existence of chimera and multichimera states. The inhibitor self coupling in local interaction induces interesting patterns like Mixed Oscillatory State and clusters. The results may help in understanding the spatiotemporal communications of the brain, within the limitations of the size of the network analysed in this study.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-023-09635-1.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-023-09635-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

We have analysed the synchronisation scenario and the rich spatiotemporal patterns in the network of Hindmarsh-Rose neurons under the influence of self, mixed and cross coupling of state variables which are realised by varying coupling phase. We have introduced a coupling matrix in the model to vary coupling phase. The excitatory and inhibitory couplings in the membrane potential induce in-phase and anti-phase bursting dynamics, respectively, in the two coupled system. When the off-diagonal elements of the matrix are zero, the system shows self coupling of the three variables, which helps to attain synchrony. The off-diagonal elements give cross interactions between the variables, which reduces synchrony. The stability of the synchrony attained is analysed using Lyapunov function approach. In our study, we found that self coupling in three variables is sufficient to induce chimera states in non-local coupling. The strength of incoherence and discontinuity measure validates the existence of chimera and multichimera states. The inhibitor self coupling in local interaction induces interesting patterns like Mixed Oscillatory State and clusters. The results may help in understanding the spatiotemporal communications of the brain, within the limitations of the size of the network analysed in this study.

Abstract Image

不同耦合相位下神经网络的同相和反相爆破动力学及同步场景
我们分析了在状态变量的自耦合、混合耦合和交叉耦合的影响下,Hindmarsh-Rose神经元网络中的同步场景和丰富的时空模式,这些状态变量通过不同的耦合相位实现。我们在模型中引入了耦合矩阵来改变耦合相位。膜电位的兴奋性偶联和抑制性偶联在两种偶联系统中分别诱导相内和反相破裂动力学。当矩阵的非对角线元素为零时,系统显示出三个变量的自耦合,有助于实现同步。非对角线元素在变量之间提供交叉交互,从而减少了同步性。利用李雅普诺夫函数法分析了同步的稳定性。在我们的研究中,我们发现三个变量的自耦合足以诱导非局部耦合的嵌合体状态。非相干强度和不连续测量验证了嵌合体和多嵌合体状态的存在。抑制剂在局部相互作用中的自耦合诱导出混合振荡态和团簇等有趣的模式。在本研究分析的网络大小的限制下,结果可能有助于理解大脑的时空通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信