Identification of common buckwheat (Fagopyrum esculentum Moench) adulterated in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour based on near-infrared spectroscopy and chemometrics

IF 7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yinghui Chai , Yue Yu , Hui Zhu , Zhanming Li , Hao Dong , Hongshun Yang
{"title":"Identification of common buckwheat (Fagopyrum esculentum Moench) adulterated in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour based on near-infrared spectroscopy and chemometrics","authors":"Yinghui Chai ,&nbsp;Yue Yu ,&nbsp;Hui Zhu ,&nbsp;Zhanming Li ,&nbsp;Hao Dong ,&nbsp;Hongshun Yang","doi":"10.1016/j.crfs.2023.100573","DOIUrl":null,"url":null,"abstract":"<div><p>Near-infrared spectroscopy (NIRS) presents great potential in the identification of food adulteration due to its advantages of nondestructive, simple, and easy to operate. In this paper, a method based on NIRS and chemometrics was proposed to predict the content of common buckwheat (<em>Fagopyrum esculentum</em> Moench) flour in Tartary buckwheat (<em>Fagopyrum tataricum</em> (L.) Gaertn) flour. Partial least squares regression (PLSR) and support vector regression (SVR) models were used to analyze the spectrum data of adulterated samples and predict the adulteration level. Various preprocessing methods, parameter-optimization methods, and competitive adaptive reweighted sampling (CARS) wavelength-selection methods were used to optimize the model prediction accuracy. The results of PLSR and SVR modeling for predicting of Tartary buckwheat adulteration content were satisfactory, and the correlation coefficients of the optimum identification models were above 0.99. In conclusion, the combinations of NIRS and chemometrics indicated excellent predictive performance and applicability to analyze the adulteration of common buckwheat flour in Tartary buckwheat flour. This work provides a promising method to identify the adulteration of Tartary buckwheat flour and results obtained can give theoretical and data support for adulteration identification of agro-products.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"7 ","pages":"Article 100573"},"PeriodicalIF":7.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927123001417","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Near-infrared spectroscopy (NIRS) presents great potential in the identification of food adulteration due to its advantages of nondestructive, simple, and easy to operate. In this paper, a method based on NIRS and chemometrics was proposed to predict the content of common buckwheat (Fagopyrum esculentum Moench) flour in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) flour. Partial least squares regression (PLSR) and support vector regression (SVR) models were used to analyze the spectrum data of adulterated samples and predict the adulteration level. Various preprocessing methods, parameter-optimization methods, and competitive adaptive reweighted sampling (CARS) wavelength-selection methods were used to optimize the model prediction accuracy. The results of PLSR and SVR modeling for predicting of Tartary buckwheat adulteration content were satisfactory, and the correlation coefficients of the optimum identification models were above 0.99. In conclusion, the combinations of NIRS and chemometrics indicated excellent predictive performance and applicability to analyze the adulteration of common buckwheat flour in Tartary buckwheat flour. This work provides a promising method to identify the adulteration of Tartary buckwheat flour and results obtained can give theoretical and data support for adulteration identification of agro-products.

Abstract Image

基于近红外光谱和化学计量学的苦麦粉中掺伪荞麦的鉴别
近红外光谱法(NIRS)具有无损、简单、易操作等优点,在食品掺假检测中具有巨大的应用潜力。本文提出了一种基于近红外光谱和化学计量学的方法来预测苦麦粉中普通荞麦粉的含量。采用偏最小二乘回归(PLSR)和支持向量回归(SVR)模型对掺假样品的光谱数据进行分析,预测掺假程度。使用各种预处理方法、参数优化方法和竞争自适应重加权采样(CARS)波长选择方法来优化模型预测精度。PLSR和SVR模型对苦麦掺假含量的预测结果令人满意,最优识别模型的相关系数均在0.99以上。总之,近红外光谱和化学计量学相结合,对苦麦粉中常见荞麦粉的掺假分析具有良好的预测性能和适用性。本工作为苦荞麦粉的掺假鉴别提供了一种很有前景的方法,所得结果可为农产品的掺假鉴定提供理论和数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信