Symplectic analysis of time-frequency spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Elena Cordero , Gianluca Giacchi
{"title":"Symplectic analysis of time-frequency spaces","authors":"Elena Cordero ,&nbsp;Gianluca Giacchi","doi":"10.1016/j.matpur.2023.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>We present a different symplectic point of view in the definition of weighted modulation spaces <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> and weighted Wiener amalgam spaces <span><math><mi>W</mi><mo>(</mo><mi>F</mi><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mi>q</mi></mrow></msubsup><mo>)</mo><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. All the classical time-frequency representations, such as the short-time Fourier transform (STFT), the <em>τ</em>-Wigner distributions and the ambiguity function, can be written as metaplectic Wigner distributions <span><math><mi>μ</mi><mo>(</mo><mi>A</mi><mo>)</mo><mo>(</mo><mi>f</mi><mo>⊗</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span>, where <span><math><mi>μ</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is the metaplectic operator and <span><math><mi>A</mi></math></span> is the associated symplectic matrix. Namely, time-frequency representations can be represented as images of metaplectic operators, which become the real protagonists of time-frequency analysis. In <span>[13]</span>, the authors suggest that any metaplectic Wigner distribution that satisfies the so-called <em>shift-invertibility condition</em> can replace the STFT in the definition of modulation spaces. In this work, we prove that shift-invertibility alone is not sufficient, but it has to be complemented by an upper-triangularity condition for this characterization to hold, whereas a lower-triangularity property comes into play for Wiener amalgam spaces. The shift-invertibility property is necessary: Rihaczek and conjugate Rihaczek distributions are not shift-invertible and they fail the characterization of the above spaces. We also exhibit examples of shift-invertible distributions without upper-triangularity condition which do not define modulation spaces. Finally, we provide new families of time-frequency representations that characterize modulation spaces, with the purpose of replacing the time-frequency shifts with other atoms that allow to decompose signals differently, with possible new outcomes in applications.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a different symplectic point of view in the definition of weighted modulation spaces Mmp,q(Rd) and weighted Wiener amalgam spaces W(FLm1p,Lm2q)(Rd). All the classical time-frequency representations, such as the short-time Fourier transform (STFT), the τ-Wigner distributions and the ambiguity function, can be written as metaplectic Wigner distributions μ(A)(fg¯), where μ(A) is the metaplectic operator and A is the associated symplectic matrix. Namely, time-frequency representations can be represented as images of metaplectic operators, which become the real protagonists of time-frequency analysis. In [13], the authors suggest that any metaplectic Wigner distribution that satisfies the so-called shift-invertibility condition can replace the STFT in the definition of modulation spaces. In this work, we prove that shift-invertibility alone is not sufficient, but it has to be complemented by an upper-triangularity condition for this characterization to hold, whereas a lower-triangularity property comes into play for Wiener amalgam spaces. The shift-invertibility property is necessary: Rihaczek and conjugate Rihaczek distributions are not shift-invertible and they fail the characterization of the above spaces. We also exhibit examples of shift-invertible distributions without upper-triangularity condition which do not define modulation spaces. Finally, we provide new families of time-frequency representations that characterize modulation spaces, with the purpose of replacing the time-frequency shifts with other atoms that allow to decompose signals differently, with possible new outcomes in applications.

时频空间的辛分析
在定义加权调制空间Mmp,q(Rd)和加权Wiener混合空间W(FLm1p,Lm2q)(Rd。所有经典的时频表示,如短时傅立叶变换(STFT)、τ-Wigner分布和模糊函数,都可以写成元辛Wigner分布μ(A)(f⊗g’),其中μ(A)是元算子,A是相关的辛矩阵。也就是说,时间-频率表示可以表示为元算子的图像,它们成为时间-频率分析的真正主角。在[13]中,作者提出,在调制空间的定义中,任何满足所谓的移位可逆条件的元辛Wigner分布都可以取代STFT。在这项工作中,我们证明了仅移位可逆性是不够的,但它必须由上三角性条件来补充,才能保持这种刻画,而下三角性性质在维纳汞齐空间中发挥作用。移位可逆性是必要的:Rihaczek和共轭Rihaczek分布不是移位可逆的,并且它们不能表征上述空间。我们还展示了没有上三角性条件的移位可逆分布的例子,这些条件不定义调制空间。最后,我们提供了表征调制空间的新的时频表示族,目的是用允许以不同方式分解信号的其他原子取代时频偏移,从而在应用中获得可能的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信