Resonances and residue operators for pseudo-Riemannian hyperbolic spaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jan Frahm , Polyxeni Spilioti
{"title":"Resonances and residue operators for pseudo-Riemannian hyperbolic spaces","authors":"Jan Frahm ,&nbsp;Polyxeni Spilioti","doi":"10.1016/j.matpur.2023.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>For any pseudo-Riemannian hyperbolic space <em>X</em> over <span><math><mi>R</mi><mo>,</mo><mi>C</mi><mo>,</mo><mi>H</mi></math></span> or <span><math><mi>O</mi></math></span>, we show that the resolvent <span><math><mi>R</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mo>□</mo><mo>−</mo><mi>z</mi><mi>Id</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> of the Laplace–Beltrami operator −□ on <em>X</em> can be extended meromorphically across the spectrum of □ as a family of operators <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. Its poles are called <em>resonances</em> and we determine them explicitly in all cases. For each resonance, the image of the corresponding residue operator in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> forms a representation of the isometry group of <em>X</em>, which we identify with a subrepresentation of a degenerate principal series. Our study includes in particular the case of even functions on de Sitter and Anti-de Sitter spaces.</p><p>For Riemannian symmetric spaces analogous results were obtained by Miatello–Will and Hilgert–Pasquale. The main qualitative differences between the Riemannian and the non-Riemannian setting are that for non-Riemannian spaces the resolvent can have poles of order two, it can have a pole at the branching point of the covering to which <span><math><mi>R</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> extends, and the residue representations can be infinite-dimensional.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

For any pseudo-Riemannian hyperbolic space X over R,C,H or O, we show that the resolvent R(z)=(zId)1 of the Laplace–Beltrami operator −□ on X can be extended meromorphically across the spectrum of □ as a family of operators Cc(X)D(X). Its poles are called resonances and we determine them explicitly in all cases. For each resonance, the image of the corresponding residue operator in D(X) forms a representation of the isometry group of X, which we identify with a subrepresentation of a degenerate principal series. Our study includes in particular the case of even functions on de Sitter and Anti-de Sitter spaces.

For Riemannian symmetric spaces analogous results were obtained by Miatello–Will and Hilgert–Pasquale. The main qualitative differences between the Riemannian and the non-Riemannian setting are that for non-Riemannian spaces the resolvent can have poles of order two, it can have a pole at the branching point of the covering to which R(z) extends, and the residue representations can be infinite-dimensional.

伪黎曼双曲空间的共振和剩余算子
对于R、C、H或O上的任何伪黎曼双曲空间X,我们证明了预解式R(z)=(□−zId)−1的拉普拉斯-贝尔特拉米算子−□ 在X上可以亚射地扩展到□ 作为算子族Cc∞(X)→D′(X)。它的极点被称为共振,我们在所有情况下都明确地确定它们。对于每个共振,D′(X)中对应的残差算子的图像形成X的等距群的表示,我们将其识别为退化主级数的子表示。我们的研究特别包括de Sitter和Anti de Sitter空间上偶函数的情况。对于黎曼对称空间,Miatello–Will和Hilgert–Pasquale得到了类似的结果。黎曼集合和非黎曼集合之间的主要定性差异是,对于非黎曼空间,预解式可以具有二阶极点,它可以在R(z)延伸到的覆盖的分支点处具有极点,并且残差表示可以是无穷维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信