L2 extension of holomorphic functions for log canonical pairs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dano Kim
{"title":"L2 extension of holomorphic functions for log canonical pairs","authors":"Dano Kim","doi":"10.1016/j.matpur.2023.06.013","DOIUrl":null,"url":null,"abstract":"<div><p>In a general <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> extension theorem of Demailly for log canonical pairs, the </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span> criterion with respect to a measure called the Ohsawa measure determines when a given holomorphic function<span> can be extended. Despite the analytic nature of the Ohsawa measure, we establish a geometric characterization of this analytic criterion using the theory of log canonical centers from algebraic geometry. Along the way, we characterize when the Ohsawa measure fails to have generically smooth positive density, which answers an essential question arising from Demailly's work.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

Abstract

In a general L2 extension theorem of Demailly for log canonical pairs, the L2 criterion with respect to a measure called the Ohsawa measure determines when a given holomorphic function can be extended. Despite the analytic nature of the Ohsawa measure, we establish a geometric characterization of this analytic criterion using the theory of log canonical centers from algebraic geometry. Along the way, we characterize when the Ohsawa measure fails to have generically smooth positive density, which answers an essential question arising from Demailly's work.

对数正则对的全纯函数的L2扩展
在德迈利关于对数正则对的一般L2扩张定理中,关于称为Ohsawa测度的测度的L2准则决定了给定全纯函数何时可以扩张。尽管Ohsawa测度具有解析性质,但我们使用代数几何中的对数正则中心理论建立了该解析准则的几何特征。在此过程中,我们描述了Ohsawa测度何时不能具有一般光滑的正密度,这回答了Demaily工作中出现的一个重要问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信