Dushyant M. Chaudhari, Craig Weinschenk, Jason E. Floyd
{"title":"Numerical Simulations of Gas Burner Experiments in a Residential Structure with HVAC System","authors":"Dushyant M. Chaudhari, Craig Weinschenk, Jason E. Floyd","doi":"10.1007/s10694-023-01390-y","DOIUrl":null,"url":null,"abstract":"<div><p>Controlled fire experiments using a gas burner were previously conducted in a purpose-built, two-story, moderately air-tight residential structure to understand the effect of a heating, ventilating, and air conditioning (HVAC) system and door positions on the fire-induced environment. Temperatures, gas concentrations (oxygen, water vapor, carbon dioxide), and differential pressures were monitored throughout the structure. HVAC status (off vs. on) and stairwell door position of the fire room (open vs. closed) were varied for the experiments analyzed in this paper. In this study, Fire Dynamics Simulator (FDS) v. 6.7.9 was used to simulate these experiments. Experimental data quantifying the air tightness of the building and cold flowrates through HVAC vents were determined to be important to optimize leakages and HVAC loss coefficients for the simulation setup. Pressure development in the structure was predicted correctly to be higher on the first floor and lower in the basement, but the magnitude of steady-state pressure was underpredicted. The measured and predicted steady-state temperature distributions were statistically different for the cases with and without the HVAC on, regardless of the door position. FDS predicted gas transport through the HVAC duct network, and under-predicted temperature rise and water vapor content by about 9% and 10%, respectively, and over-predicted volumetric oxygen and carbon dioxide content by about 21% and 6%, respectively. Temperature rise prediction in the closed room, where the gas transport primarily occurred via the HVAC duct network, improved after including heat loss from the HVAC duct to the ambient.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"59 4","pages":"1489 - 1517"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-023-01390-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-023-01390-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlled fire experiments using a gas burner were previously conducted in a purpose-built, two-story, moderately air-tight residential structure to understand the effect of a heating, ventilating, and air conditioning (HVAC) system and door positions on the fire-induced environment. Temperatures, gas concentrations (oxygen, water vapor, carbon dioxide), and differential pressures were monitored throughout the structure. HVAC status (off vs. on) and stairwell door position of the fire room (open vs. closed) were varied for the experiments analyzed in this paper. In this study, Fire Dynamics Simulator (FDS) v. 6.7.9 was used to simulate these experiments. Experimental data quantifying the air tightness of the building and cold flowrates through HVAC vents were determined to be important to optimize leakages and HVAC loss coefficients for the simulation setup. Pressure development in the structure was predicted correctly to be higher on the first floor and lower in the basement, but the magnitude of steady-state pressure was underpredicted. The measured and predicted steady-state temperature distributions were statistically different for the cases with and without the HVAC on, regardless of the door position. FDS predicted gas transport through the HVAC duct network, and under-predicted temperature rise and water vapor content by about 9% and 10%, respectively, and over-predicted volumetric oxygen and carbon dioxide content by about 21% and 6%, respectively. Temperature rise prediction in the closed room, where the gas transport primarily occurred via the HVAC duct network, improved after including heat loss from the HVAC duct to the ambient.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.