Drivers of the differentiation between broad-leaved trees and shrubs in the shift from evergreen to deciduous leaf habit in forests of eastern Asian subtropics

IF 4.6 1区 生物学 Q1 PLANT SCIENCES
Yi Jin , Hong Qian
{"title":"Drivers of the differentiation between broad-leaved trees and shrubs in the shift from evergreen to deciduous leaf habit in forests of eastern Asian subtropics","authors":"Yi Jin ,&nbsp;Hong Qian","doi":"10.1016/j.pld.2022.12.008","DOIUrl":null,"url":null,"abstract":"<div><p>In eastern Asian subtropical forests, leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes. This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions (e.g., greater seasonality). The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest canopy trees than in forest understory shrubs. Furthermore, we hypothesize that in the forests of the subtropics, plants at higher latitudes, regardless of growth form, would better tolerate seasonal harsh climates, and hence show less differentiation in leaf habit shift, compared to those at lower latitudes. To test these two hypotheses, we modelled the proportion of deciduous broad-leaved species and the incidence of deciduous and evergreen broad-leaved species in woody angiosperm species compositions of ten large-sized forest plots distributed in the Chinese subtropics. We found that the rate of leaf habit shift along a latitudinal gradient was higher in forest trees than in forest shrubs. We also found that the differentiation in leaf habit shift between trees and shrubs is greater at lower latitudes (i.e., warmer climates) than at higher latitudes (i.e., colder climates). These findings indicate that specialized forest plants are differentially affected by climate in distinct forest strata in a manner dependent on latitudinal distribution. These differences in forest plant response to changes in climate suggest that global climate warming will alter growth forms and geographical distributions and ranges of forests.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468265922001330","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

In eastern Asian subtropical forests, leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes. This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions (e.g., greater seasonality). The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest canopy trees than in forest understory shrubs. Furthermore, we hypothesize that in the forests of the subtropics, plants at higher latitudes, regardless of growth form, would better tolerate seasonal harsh climates, and hence show less differentiation in leaf habit shift, compared to those at lower latitudes. To test these two hypotheses, we modelled the proportion of deciduous broad-leaved species and the incidence of deciduous and evergreen broad-leaved species in woody angiosperm species compositions of ten large-sized forest plots distributed in the Chinese subtropics. We found that the rate of leaf habit shift along a latitudinal gradient was higher in forest trees than in forest shrubs. We also found that the differentiation in leaf habit shift between trees and shrubs is greater at lower latitudes (i.e., warmer climates) than at higher latitudes (i.e., colder climates). These findings indicate that specialized forest plants are differentially affected by climate in distinct forest strata in a manner dependent on latitudinal distribution. These differences in forest plant response to changes in climate suggest that global climate warming will alter growth forms and geographical distributions and ranges of forests.

东亚亚热带森林常绿落叶性转变过程中阔叶树和灌木分化的驱动因素
在东亚亚热带森林中,叶性从常绿到落叶阔叶木本植物向高纬度地区转变。这种变化在很大程度上可以解释为落叶阔叶植物对恶劣气候条件的反应能力更强(例如季节性更强)。在更具季节性的气候中,落叶习性比常绿习性的优势使我们假设,与森林林下灌木相比,森林冠层树木的落叶习性会随着气候变化而发生更显著的变化。此外,我们假设,在亚热带的森林中,与低纬度的植物相比,高纬度的植物,无论生长形式如何,都能更好地忍受季节性的恶劣气候,因此在叶性变化方面表现出较少的分化。为了检验这两个假设,我们模拟了分布在中国亚热带的10个大型林区的木本被子植物物种组成中落叶阔叶物种的比例以及落叶和常绿阔叶物种的发生率。我们发现,森林树木的叶片习性沿纬度梯度的变化率高于森林灌木。我们还发现,在低纬度(即温暖的气候),树木和灌木之间的叶性变化差异比在高纬度(即寒冷的气候)更大。这些发现表明,在不同的森林地层中,特种森林植物受到气候的不同影响,其方式取决于纬度分布。森林植物对气候变化反应的这些差异表明,全球气候变暖将改变森林的生长形式、地理分布和范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信