Space-like quantitative uniqueness for parabolic operators

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Vedansh Arya, Agnid Banerjee
{"title":"Space-like quantitative uniqueness for parabolic operators","authors":"Vedansh Arya,&nbsp;Agnid Banerjee","doi":"10.1016/j.matpur.2023.06.014","DOIUrl":null,"url":null,"abstract":"<div><p><span>We obtain sharp maximal vanishing order at a given time level for solutions to parabolic equations with a </span><span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> potential <em>V</em>. Our main result <span>Theorem 1.1</span> is a parabolic generalization of a well known result of Donnelly-Fefferman and Bakri. It also sharpens a previous result of Zhu that establishes similar vanishing order estimates which are instead averaged over time. The principal tool in our analysis is a new quantitative version of the well-known Escauriaza-Fernandez-Vessella type Carleman estimate that we establish in our setting.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423000880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

We obtain sharp maximal vanishing order at a given time level for solutions to parabolic equations with a C1 potential V. Our main result Theorem 1.1 is a parabolic generalization of a well known result of Donnelly-Fefferman and Bakri. It also sharpens a previous result of Zhu that establishes similar vanishing order estimates which are instead averaged over time. The principal tool in our analysis is a new quantitative version of the well-known Escauriaza-Fernandez-Vessella type Carleman estimate that we establish in our setting.

抛物型算子的类空间量化唯一性
对于具有C1势V的抛物型方程的解,我们在给定的时间水平上获得了尖锐的最大消失阶。我们的主要结果定理1.1是Donnelly-Fefferman和Bakri的一个众所周知的结果的抛物推广。这也强化了朱之前的一个结果,该结果建立了类似的消失阶估计,而这些估计是随时间平均的。我们分析的主要工具是我们在我们的环境中建立的著名的Escauriaza Fernandez-Vessella型Carleman估计的新的定量版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信