Genetic dissection of N use efficiency using maize inbred lines and testcrosses

IF 6 1区 农林科学 Q1 AGRONOMY
Xiaoyang Liu , Kunhui He , Farhan Ali , Dongdong Li , Hongguang Cai , Hongwei Zhang , Lixing Yuan , Wenxin Liu , Guohua Mi , Fanjun Chen , Qingchun Pan
{"title":"Genetic dissection of N use efficiency using maize inbred lines and testcrosses","authors":"Xiaoyang Liu ,&nbsp;Kunhui He ,&nbsp;Farhan Ali ,&nbsp;Dongdong Li ,&nbsp;Hongguang Cai ,&nbsp;Hongwei Zhang ,&nbsp;Lixing Yuan ,&nbsp;Wenxin Liu ,&nbsp;Guohua Mi ,&nbsp;Fanjun Chen ,&nbsp;Qingchun Pan","doi":"10.1016/j.cj.2023.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>Although the use of heterosis in maize breeding has increased crop productivity, the genetic causes underlying heterosis for nitrogen (N) use efficiency (NUE) have been insufficiently investigated. In this study, five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations (ILs) consisting of recombinant inbred lines (RIL) and advanced backcross (ABL) populations, derived from crossing Ye478 with Wu312. Both populations were crossed with P178 to construct two testcross populations. IL populations, their testcross populations, and the midparent heterosis (MPH) for NUE were investigated. Kernel weight, kernel number, and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations. Based on a high-density linkage map, 138 quantitative trait loci (QTL) were mapped, each explaining 5.6%–38.8% of genetic variation. There were 52, 34 and 52 QTL for IL populations, MPH, and testcross populations, respectively. The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci. A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and <em>Gln1-3</em> was identified as a candidate gene for this QTL. Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy. Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000417","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

Abstract

Although the use of heterosis in maize breeding has increased crop productivity, the genetic causes underlying heterosis for nitrogen (N) use efficiency (NUE) have been insufficiently investigated. In this study, five N-response traits and five low-N-tolerance traits were investigated using two inbred line populations (ILs) consisting of recombinant inbred lines (RIL) and advanced backcross (ABL) populations, derived from crossing Ye478 with Wu312. Both populations were crossed with P178 to construct two testcross populations. IL populations, their testcross populations, and the midparent heterosis (MPH) for NUE were investigated. Kernel weight, kernel number, and kernel number per row were sensitive to N level and ILs showed higher N response than did the testcross populations. Based on a high-density linkage map, 138 quantitative trait loci (QTL) were mapped, each explaining 5.6%–38.8% of genetic variation. There were 52, 34 and 52 QTL for IL populations, MPH, and testcross populations, respectively. The finding that 7.6% of QTL were common to the ILs and their testcross populations and that 11.7% were common to the MPH and testcross population indicated that heterosis for NUE traits was regulated by non-additive and non-dominant loci. A QTL on chromosome 5 explained 27% of genetic variation in all of the traits and Gln1-3 was identified as a candidate gene for this QTL. Genome-wide prediction of NUE traits in the testcross populations showed 14%–51% accuracy. Our results may be useful for clarifying the genetic basis of heterosis for NUE traits and the candidate gene may be used for genetic improvement of maize NUE.

玉米自交系和试验组合氮利用效率的遗传分析
尽管在玉米育种中利用杂种优势提高了作物生产力,但对氮利用效率杂种优势的遗传原因研究不足。在本研究中,使用由重组自交系(RIL)和高级回交(ABL)群体组成的两个自交系群体(ILs),从Ye478与Wu312的杂交中获得了五个氮反应性状和五个低氮耐受性状。将两个群体与P178杂交,构建两个测试杂交群体。研究了IL群体、它们的杂交群体和NUE的中亲优势(MPH)。粒重、粒数和每行粒数对氮水平敏感,离子液体表现出比试交群体更高的氮响应。基于高密度连锁图谱,共定位了138个数量性状位点(QTL),每个位点解释了5.6%-38.8%的遗传变异。IL群体、MPH群体和试交群体分别有52、34和52个QTL。发现7.6%的QTL在ILs及其杂交群体中是共有的,11.7%在MPH和杂交群体中也是共有的,这表明NUE性状的杂种优势受到非加性和非显性基因座的调控。5号染色体上的一个QTL解释了所有性状27%的遗传变异,Gln1-3被鉴定为该QTL的候选基因。测试杂交群体中NUE性状的全基因组预测显示出14%-51%的准确率。我们的研究结果可能有助于阐明玉米NUE性状杂种优势的遗传基础,并为玉米NUE的遗传改良提供候选基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crop Journal
Crop Journal Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍: The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信