Leyuan Tao , Bing Wang , Shichao Xin , Wei Li , Shengcai Huang , Laihua Liu , Jing Cui , Qianru Zhang , Xianguo Cheng
{"title":"A cluster of mutagenesis revealed an osmotic regulatory role of the OsPIP1 genes in enhancing rice salt tolerance","authors":"Leyuan Tao , Bing Wang , Shichao Xin , Wei Li , Shengcai Huang , Laihua Liu , Jing Cui , Qianru Zhang , Xianguo Cheng","doi":"10.1016/j.cj.2023.04.010","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaporins play important regulatory roles in improving plant abiotic stress tolerance. To better understand whether the <em>OsPIP1</em> genes collectively dominate the osmotic regulation in rice under salt stress, a cluster editing of the <em>OsPIP1;1</em>, <em>OsPIP1;2</em> and <em>OsPIP1;3</em> genes in rice was performed by CRISPR/Cas9 system. Sequencing showed that two mutants with Cas9-free, line 14 and line 18 were successfully edited. Briefly, line 14 deleted a single C base in both the <em>OsPIP1;1</em> and <em>OsPIP1;3</em> genes, and inserted a single T base in the <em>OsPIP1;2</em> gene, respectively. While line 18 demonstrated an insertion of a single A base in the <em>OsPIP1;1</em> gene and a single T base in both the <em>OsPIP1;2</em> and <em>OsPIP1;3</em> genes, respectively. Multiplex editing of the <em>OsPIP1</em> genes significantly inhibited photosynthetic rate and accumulation of compatible metabolites, but increased MDA contents and osmotic potentials in the mutants, thus delaying rice growth under salt stress. Functional loss of the <em>OsPIP1</em> genes obviously suppressed the expressions of the <em>OsPIP1</em>, <em>OsSOS1</em>, <em>OsCIPK24</em> and <em>OsCBL4</em> genes, and increased the influxes of Na<sup>+</sup> and effluxes of K<sup>+</sup>/H<sup>+</sup> in the roots, thus accumulating more Na<sup>+</sup> in rice mutants under salt stress. This study suggests that the <em>OsPIP1</em> genes are essential modulators collectively contributing to the enhancement of rice salt stress tolerance, and multiplex editing of the <em>OsPIP1</em> genes provides insight into the osmotic regulation of the <em>PIP</em> genes.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000685","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Aquaporins play important regulatory roles in improving plant abiotic stress tolerance. To better understand whether the OsPIP1 genes collectively dominate the osmotic regulation in rice under salt stress, a cluster editing of the OsPIP1;1, OsPIP1;2 and OsPIP1;3 genes in rice was performed by CRISPR/Cas9 system. Sequencing showed that two mutants with Cas9-free, line 14 and line 18 were successfully edited. Briefly, line 14 deleted a single C base in both the OsPIP1;1 and OsPIP1;3 genes, and inserted a single T base in the OsPIP1;2 gene, respectively. While line 18 demonstrated an insertion of a single A base in the OsPIP1;1 gene and a single T base in both the OsPIP1;2 and OsPIP1;3 genes, respectively. Multiplex editing of the OsPIP1 genes significantly inhibited photosynthetic rate and accumulation of compatible metabolites, but increased MDA contents and osmotic potentials in the mutants, thus delaying rice growth under salt stress. Functional loss of the OsPIP1 genes obviously suppressed the expressions of the OsPIP1, OsSOS1, OsCIPK24 and OsCBL4 genes, and increased the influxes of Na+ and effluxes of K+/H+ in the roots, thus accumulating more Na+ in rice mutants under salt stress. This study suggests that the OsPIP1 genes are essential modulators collectively contributing to the enhancement of rice salt stress tolerance, and multiplex editing of the OsPIP1 genes provides insight into the osmotic regulation of the PIP genes.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.