Wei Ma , Jie Li , Fengjun Liu , Tianzhen Zhang , Xueying Guan
{"title":"GhHSP24.7 mediates mitochondrial protein acetylation to regulate stomatal conductance in response to abiotic stress in cotton","authors":"Wei Ma , Jie Li , Fengjun Liu , Tianzhen Zhang , Xueying Guan","doi":"10.1016/j.cj.2022.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>During seed germination, the cotton chaperone protein HSP24.7 regulates the release, from the mitochondrial electron transport chain, of reactive oxygen species (ROS), a stimulative signal regulating germination. The function of HSP24.7 during vegetative stages remains largely unknown. Here we propose that suppression of <em>GhHSP24.7</em> in cotton seedlings increases tolerance to heat and drought stress. Elevation of <em>GhHSP24.7</em> was found to be positively associated with endogenous levels of ROS. We identified a new client protein of GhHSP24.7, cotton lysine deacetylase (GhHDA14), which is involved in mitochondrial protein modification. Elevated levels of <em>GhHSP24.7</em> suppressed deacetylase activity in mitochondria, leading to increased acetylation of mitochondrial proteins enriched in the subunit of F-type ATPase, V-type ATPase, and cytochrome <em>C</em> reductase, ultimately reducing leaf ATP content. Consequently, in combination with altered ROS content, <em>GhHSP24.7</em> transgenic lines were unable to coordinate stomatal closure under stress. The regulation circuit composed of GhHSP24.7 and GhHDA14 represents a post-translation level mechanism in plant abiotic stress responses that integrates the regulation of ROS and ATP.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 4","pages":"Pages 1128-1139"},"PeriodicalIF":6.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514122002185","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 3
Abstract
During seed germination, the cotton chaperone protein HSP24.7 regulates the release, from the mitochondrial electron transport chain, of reactive oxygen species (ROS), a stimulative signal regulating germination. The function of HSP24.7 during vegetative stages remains largely unknown. Here we propose that suppression of GhHSP24.7 in cotton seedlings increases tolerance to heat and drought stress. Elevation of GhHSP24.7 was found to be positively associated with endogenous levels of ROS. We identified a new client protein of GhHSP24.7, cotton lysine deacetylase (GhHDA14), which is involved in mitochondrial protein modification. Elevated levels of GhHSP24.7 suppressed deacetylase activity in mitochondria, leading to increased acetylation of mitochondrial proteins enriched in the subunit of F-type ATPase, V-type ATPase, and cytochrome C reductase, ultimately reducing leaf ATP content. Consequently, in combination with altered ROS content, GhHSP24.7 transgenic lines were unable to coordinate stomatal closure under stress. The regulation circuit composed of GhHSP24.7 and GhHDA14 represents a post-translation level mechanism in plant abiotic stress responses that integrates the regulation of ROS and ATP.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.