The nonlinear (p,q)-Schrödinger equation with a general nonlinearity: Existence and concentration

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Vincenzo Ambrosio
{"title":"The nonlinear (p,q)-Schrödinger equation with a general nonlinearity: Existence and concentration","authors":"Vincenzo Ambrosio","doi":"10.1016/j.matpur.2023.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the following class of <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Laplacian problems:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>v</mi><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><msub><mrow><mi>Δ</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>v</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>(</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>v</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>v</mi><mo>&gt;</mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is a small parameter, <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mi>N</mi></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>s</mi></mrow></msub><mi>v</mi><mo>:</mo><mo>=</mo><mi>div</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>v</mi><mo>)</mo></math></span>, with <span><math><mi>s</mi><mo>∈</mo><mo>{</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>}</mo></math></span>, is the <em>s</em>-Laplacian operator, <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> is a continuous potential such that <span><math><msub><mrow><mi>inf</mi></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo>⁡</mo><mi>V</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mi>inf</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mo>⁡</mo><mi>V</mi><mo>&lt;</mo><msub><mrow><mi>min</mi></mrow><mrow><mo>∂</mo><mi>Λ</mi></mrow></msub><mo>⁡</mo><mi>V</mi></math></span> for some bounded open set <span><math><mi>Λ</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, and <span><math><mi>f</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> is a subcritical Berestycki-Lions type nonlinearity. Using variational arguments, we show the existence of a family of solutions <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>)</mo></math></span> which concentrates around <span><math><mi>M</mi><mo>:</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>Λ</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> as <span><math><mi>ε</mi><mo>→</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the following class of (p,q)-Laplacian problems:{εpΔpvεqΔqv+V(x)(|v|p2v+|v|q2v)=f(v) in RN,vW1,p(RN)W1,q(RN),v>0 in RN, where ε>0 is a small parameter, N3, 1<p<q<N, Δsv:=div(|v|s2v), with s{p,q}, is the s-Laplacian operator, V:RNR is a continuous potential such that infRNV>0 and V0:=infΛV<minΛV for some bounded open set ΛRN, and f:RR is a subcritical Berestycki-Lions type nonlinearity. Using variational arguments, we show the existence of a family of solutions (vε) which concentrates around M:={xΛ:V(x)=V0} as ε0.

具有一般非线性的非线性(p,q)-Schrödinger方程:存在性和集中性
我们研究了以下一类(p,q)-拉普拉斯问题:{εpΔpvεqΔqv+V(x)(|V|p−2v+|V|q−2v)=f(V)在RN中,V∈W1,p(RN)≠W1,q(RN),V>;0在RN中。:注册护士→R是一个连续电势,使得infRN⁡V>;0和V0:=inf∧⁡V<;最小∧∧⁡一个有界开集∧⊂RN的V和f:R→R是亚临界Berestycki-Lions型非线性。利用变分论点,我们证明了一个解族(vε)的存在性,它集中在M:={x∈∧:v(x)=V0}作为ε→0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信