Investigation of fluidic thrust vectoring for scramjets

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Chris Hambidge, William Ivison, David Steuer, Andrew Neely, Matthew McGilvray
{"title":"Investigation of fluidic thrust vectoring for scramjets","authors":"Chris Hambidge,&nbsp;William Ivison,&nbsp;David Steuer,&nbsp;Andrew Neely,&nbsp;Matthew McGilvray","doi":"10.1007/s00348-023-03607-w","DOIUrl":null,"url":null,"abstract":"<p>Fluidic thrust vectoring (FTV) offers a novel approach to aerodynamic control, circumventing some of the issues associated with mechanical systems. One method is shock vector control which involves injecting a fluid into the exhaust nozzle of an engine to redirect the gases and thus, produce a control force. An experimental model which incorporated FTV was designed and tested at Mach 6 in the Oxford high density tunnel (HDT). The model was a simplified two-dimensional scramjet geometry with two different configurations to compare an internal and external exhaust nozzle. The FTV injection system consisted of a slot at the rear edge of the exhaust nozzle fed from an internal plenum. In the experimental campaign, a range of gas injection pressures and free stream stagnation pressures were tested to assess the effectiveness of both configurations. Two new measurement methods were successfully implemented in the HDT: pressure sensitive paint and a 6-axis load cell. The FTV system has been shown to be effective with observable increases in lift and pitching moment. A linear relation between the injection pressure ratio and the control forces could be observed for both configurations.</p>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"64 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-023-03607-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-023-03607-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fluidic thrust vectoring (FTV) offers a novel approach to aerodynamic control, circumventing some of the issues associated with mechanical systems. One method is shock vector control which involves injecting a fluid into the exhaust nozzle of an engine to redirect the gases and thus, produce a control force. An experimental model which incorporated FTV was designed and tested at Mach 6 in the Oxford high density tunnel (HDT). The model was a simplified two-dimensional scramjet geometry with two different configurations to compare an internal and external exhaust nozzle. The FTV injection system consisted of a slot at the rear edge of the exhaust nozzle fed from an internal plenum. In the experimental campaign, a range of gas injection pressures and free stream stagnation pressures were tested to assess the effectiveness of both configurations. Two new measurement methods were successfully implemented in the HDT: pressure sensitive paint and a 6-axis load cell. The FTV system has been shown to be effective with observable increases in lift and pitching moment. A linear relation between the injection pressure ratio and the control forces could be observed for both configurations.

超燃冲压发动机流体推力矢量研究
流体推力矢量(FTV)为气动控制提供了一种新颖的方法,避免了与机械系统相关的一些问题。一种方法是冲击矢量控制,它包括向发动机的排气喷嘴注入液体以改变气体的方向,从而产生控制力。设计了包含FTV的实验模型,并在牛津高密度隧道(HDT)中以6马赫的速度进行了测试。该模型是一个简化的二维超燃冲压发动机几何结构,具有两种不同的配置,以比较内外排气喷嘴。FTV喷射系统由一个位于排气喷嘴后边缘的狭槽组成,该狭槽由一个内部静压室供给。在实验活动中,测试了一系列注气压力和自由流停滞压力,以评估两种配置的有效性。在HDT中成功实施了两种新的测量方法:压敏涂料和6轴称重传感器。FTV系统已被证明是有效的,可观察到升力和俯仰力矩的增加。在两种构型下,喷射压力比与控制力之间都可以观察到线性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信