Federico Ronchetti, Thomas Schmitt, Marcello Romano, Carlo Polidori
{"title":"Cuticular hydrocarbon profiles in velvet ants (Hymenoptera: Mutillidae) are highly complex and do not chemically mimic their hosts","authors":"Federico Ronchetti, Thomas Schmitt, Marcello Romano, Carlo Polidori","doi":"10.1007/s00049-023-00382-2","DOIUrl":null,"url":null,"abstract":"<div><p>Although recognition using cuticular chemistry is important for host–parasite interactions within aculeate Hymenoptera, cuticular hydrocarbon (CHC) profiles of only a few host–parasite pairs were characterized and compared. One largely neglected family in this context is the Mutillidae (velvet ants), whose species are ectoparasitoids of bees and wasps. In our study, we characterized and compared the CHC profiles of five species of Mutillidae and seven host species. The CHC profile of velvet ants differed among species and included large proportions of <i>n</i>-alkanes and methyl-branched alkanes. Alkenes were much less abundant in the CHC profiles of three species of velvet ants compared with their hosts, while the other two species possess a much lower abundance of methyl-branched alkanes than their hosts. Both the number of peaks and compound diversity were generally higher in velvet ants compared with their hosts. Thus, CHC profiles of parasitoids did not show signs of mimicry when compared with their hosts. In dyadic encounters between one species of velvet ant and its host bee species, the parasitoid mainly avoided interacting, while aggression by the host was rare. Our results suggest that velvet ants did not evolve chemical mimicry, perhaps in accordance with their wide host spectrum which would limit chemical specialization. However, the reduction of alkenes in social bee-attacking species and the reduction of methyl-branched alkanes in social wasp-attacking species may favour host nest invasion, since these two CHC classes are known to be important in nestmate recognition for social bees and wasps, respectively. A larger, phylogeny-corrected comparison of Mutillidae and hosts may help clarifying the evolution of the CHC profile of these parasitoids.\n</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"33 1-2","pages":"29 - 43"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-023-00382-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-023-00382-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although recognition using cuticular chemistry is important for host–parasite interactions within aculeate Hymenoptera, cuticular hydrocarbon (CHC) profiles of only a few host–parasite pairs were characterized and compared. One largely neglected family in this context is the Mutillidae (velvet ants), whose species are ectoparasitoids of bees and wasps. In our study, we characterized and compared the CHC profiles of five species of Mutillidae and seven host species. The CHC profile of velvet ants differed among species and included large proportions of n-alkanes and methyl-branched alkanes. Alkenes were much less abundant in the CHC profiles of three species of velvet ants compared with their hosts, while the other two species possess a much lower abundance of methyl-branched alkanes than their hosts. Both the number of peaks and compound diversity were generally higher in velvet ants compared with their hosts. Thus, CHC profiles of parasitoids did not show signs of mimicry when compared with their hosts. In dyadic encounters between one species of velvet ant and its host bee species, the parasitoid mainly avoided interacting, while aggression by the host was rare. Our results suggest that velvet ants did not evolve chemical mimicry, perhaps in accordance with their wide host spectrum which would limit chemical specialization. However, the reduction of alkenes in social bee-attacking species and the reduction of methyl-branched alkanes in social wasp-attacking species may favour host nest invasion, since these two CHC classes are known to be important in nestmate recognition for social bees and wasps, respectively. A larger, phylogeny-corrected comparison of Mutillidae and hosts may help clarifying the evolution of the CHC profile of these parasitoids.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.