Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models

IF 3.3 Q2 TRANSPORTATION
Ziaul Haque Munim , Cemile Solak Fiskin , Bikram Nepal , Mohammed Mojahid Hossain Chowdhury
{"title":"Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models","authors":"Ziaul Haque Munim ,&nbsp;Cemile Solak Fiskin ,&nbsp;Bikram Nepal ,&nbsp;Mohammed Mojahid Hossain Chowdhury","doi":"10.1016/j.ajsl.2023.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting container throughput is critical for improved port planning, operations, and investment strategies. Reliability of forecasting methods need to be ensured before utilizing their outcomes in decision making. This study compares forecasting performances of various time series methods, namely autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), Holt-Winter's Exponential Smoothing (HWES), and the Prophet model. Since forecast combinations can improve performance, simple and weighted combinations of ARIMA, SARIMA and HWES have been explored, too. Monthly container throughput data of port of Shanghai, Busan, and Nagoya are used. The Prophet model outperforms others in the in-sample forecasting, while combined models outperform others in the out-sample forecasting. Due to the observed differences between the in-sample and out-sample forecast accuracy measures, this study proposes a forecast performance metric consistency check approach for informed real-world applications of forecasting models in port management decision-making.</p></div>","PeriodicalId":46505,"journal":{"name":"Asian Journal of Shipping and Logistics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Shipping and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092521223000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 2

Abstract

Forecasting container throughput is critical for improved port planning, operations, and investment strategies. Reliability of forecasting methods need to be ensured before utilizing their outcomes in decision making. This study compares forecasting performances of various time series methods, namely autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), Holt-Winter's Exponential Smoothing (HWES), and the Prophet model. Since forecast combinations can improve performance, simple and weighted combinations of ARIMA, SARIMA and HWES have been explored, too. Monthly container throughput data of port of Shanghai, Busan, and Nagoya are used. The Prophet model outperforms others in the in-sample forecasting, while combined models outperform others in the out-sample forecasting. Due to the observed differences between the in-sample and out-sample forecast accuracy measures, this study proposes a forecast performance metric consistency check approach for informed real-world applications of forecasting models in port management decision-making.

利用Prophet和混合时间序列模型预测亚洲主要港口的集装箱吞吐量
预测集装箱吞吐量对于改进港口规划、运营和投资策略至关重要。在决策中使用预测方法的结果之前,需要确保预测方法的可靠性。本研究比较了各种时间序列方法的预测性能,即自回归综合移动平均(ARIMA)、季节性ARIMA、Holt-Winter指数平滑(HWES)和Prophet模型。由于预测组合可以提高性能,ARIMA、SARIMA和HWES的简单和加权组合也已被探索。使用上海、釜山和名古屋港口的月度集装箱吞吐量数据。Prophet模型在样本内预测方面优于其他模型,而组合模型在样本外预测方面优于其它模型。由于观察到样本内和样本外预测准确性度量之间的差异,本研究提出了一种预测性能度量一致性检查方法,用于预测模型在港口管理决策中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
6.50%
发文量
23
审稿时长
92 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信