Haichuan Jia , Yanping Sheng , Ping Guo , Shane Underwood , Huaxin Chen , Y. Richard Kim , Yan Li , Qingwei Ma
{"title":"Effect of synthetic fibers on the mechanical performance of asphalt mixture: A review","authors":"Haichuan Jia , Yanping Sheng , Ping Guo , Shane Underwood , Huaxin Chen , Y. Richard Kim , Yan Li , Qingwei Ma","doi":"10.1016/j.jtte.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous studies showed that synthetic fibers are effective for reinforcing the mechanical performance of the asphalt mixture due to their high strength properties, ductility, and durability characteristics. In this paper, the objective is to present a review of the reinforcement effect of synthetic fiber on the mechanical performance of the asphalt mixture. This paper reviews the relevant literature on the characterizations and applications of synthetic fibers to improve different mechanical properties of asphalt mixes, which can provide a reference for the applications and development of synthetic fibers in asphalt pavement. The characteristics of common synthetic fibers are introduced and the utilization of synthetic fibers in asphalt mixture is discussed. Different surface treatment methods for fiber are reviewed and it is found that surface treatment can improve the performance of the synthetic fibers in asphalt mixtures, especially the chemical surface treatment method. The influence of synthetic fiber addition on the mechanical properties of the asphalt concrete such as rutting resistance, tensile strength, water stability performance, and cracking resistance are then discussed. The research results show that aramid, glass, and polyester fibers improve the fatigue cracking resistance of asphalt mixture. Polyester fibers, polyamide fibers, and carbon fibers are used to improve resistance to the permanent deformation of asphalt pavement.</p></div>","PeriodicalId":47239,"journal":{"name":"Journal of Traffic and Transportation Engineering-English Edition","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traffic and Transportation Engineering-English Edition","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095756423000521","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
Numerous studies showed that synthetic fibers are effective for reinforcing the mechanical performance of the asphalt mixture due to their high strength properties, ductility, and durability characteristics. In this paper, the objective is to present a review of the reinforcement effect of synthetic fiber on the mechanical performance of the asphalt mixture. This paper reviews the relevant literature on the characterizations and applications of synthetic fibers to improve different mechanical properties of asphalt mixes, which can provide a reference for the applications and development of synthetic fibers in asphalt pavement. The characteristics of common synthetic fibers are introduced and the utilization of synthetic fibers in asphalt mixture is discussed. Different surface treatment methods for fiber are reviewed and it is found that surface treatment can improve the performance of the synthetic fibers in asphalt mixtures, especially the chemical surface treatment method. The influence of synthetic fiber addition on the mechanical properties of the asphalt concrete such as rutting resistance, tensile strength, water stability performance, and cracking resistance are then discussed. The research results show that aramid, glass, and polyester fibers improve the fatigue cracking resistance of asphalt mixture. Polyester fibers, polyamide fibers, and carbon fibers are used to improve resistance to the permanent deformation of asphalt pavement.
期刊介绍:
The Journal of Traffic and Transportation Engineering (English Edition) serves as a renowned academic platform facilitating the exchange and exploration of innovative ideas in the realm of transportation. Our journal aims to foster theoretical and experimental research in transportation and welcomes the submission of exceptional peer-reviewed papers on engineering, planning, management, and information technology. We are dedicated to expediting the peer review process and ensuring timely publication of top-notch research in this field.