LU decomposition and Toeplitz decomposition of a neural network

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yucong Liu , Simiao Jiao , Lek-Heng Lim
{"title":"LU decomposition and Toeplitz decomposition of a neural network","authors":"Yucong Liu ,&nbsp;Simiao Jiao ,&nbsp;Lek-Heng Lim","doi":"10.1016/j.acha.2023.101601","DOIUrl":null,"url":null,"abstract":"<div><p>Any matrix <em>A</em> has an LU decomposition up to a row or column permutation. Less well-known is the fact that it has a ‘Toeplitz decomposition’ <span><math><mi>A</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>'s are Toeplitz matrices. We will prove that any continuous function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> has an approximation to arbitrary accuracy by a neural network that maps <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, i.e., where the weight matrices alternate between lower and upper triangular matrices, <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>≔</mo><mi>σ</mi><mo>(</mo><mi>x</mi><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> for some bias vector <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, and the activation <em>σ</em> may be chosen to be essentially any uniformly continuous nonpolynomial function. The same result also holds with Toeplitz matrices, i.e., <span><math><mi>f</mi><mo>≈</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> to arbitrary accuracy, and likewise for Hankel matrices. A consequence of our Toeplitz result is a fixed-width universal approximation theorem for convolutional neural networks, which so far have only arbitrary width versions. Since our results apply in particular to the case when <em>f</em> is a general neural network, we may regard them as LU and Toeplitz decompositions of a neural network. The practical implication of our results is that one may vastly reduce the number of weight parameters in a neural network without sacrificing its power of universal approximation. We will present several experiments on real data sets to show that imposing such structures on the weight matrices dramatically reduces the number of training parameters with almost no noticeable effect on test accuracy.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101601"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032300088X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Any matrix A has an LU decomposition up to a row or column permutation. Less well-known is the fact that it has a ‘Toeplitz decomposition’ A=T1T2Tr where Ti's are Toeplitz matrices. We will prove that any continuous function f:RnRm has an approximation to arbitrary accuracy by a neural network that maps xRn to L1σ1U1σ2L2σ3U2Lrσ2r1UrxRm, i.e., where the weight matrices alternate between lower and upper triangular matrices, σi(x)σ(xbi) for some bias vector bi, and the activation σ may be chosen to be essentially any uniformly continuous nonpolynomial function. The same result also holds with Toeplitz matrices, i.e., fT1σ1T2σ2σr1Tr to arbitrary accuracy, and likewise for Hankel matrices. A consequence of our Toeplitz result is a fixed-width universal approximation theorem for convolutional neural networks, which so far have only arbitrary width versions. Since our results apply in particular to the case when f is a general neural network, we may regard them as LU and Toeplitz decompositions of a neural network. The practical implication of our results is that one may vastly reduce the number of weight parameters in a neural network without sacrificing its power of universal approximation. We will present several experiments on real data sets to show that imposing such structures on the weight matrices dramatically reduces the number of training parameters with almost no noticeable effect on test accuracy.

神经网络的LU分解和Toeplitz分解
任何矩阵A都具有直到行或列排列的LU分解。不太为人所知的是,它有一个“Toeplitz分解”a=T1T2…Tr,其中Ti是Toeplitz矩阵。我们将证明任何连续函数f:Rn→通过将x∈Rn映射到L1σ1U1σ2L2σ3U2…Lrσ2r−1Urx∈Rm的神经网络,Rm具有任意精度的近似值,即,当权重矩阵在下三角矩阵和上三角矩阵之间交替时,σi(x)≔σ(x−bi)对于某个偏置向量bi,并且激活σ可以被选择为本质上任何一致连续的非多项式函数。同样的结果也适用于Toeplitz矩阵,即f≈T1σ1T2σ2…σr−1Tr到任意精度,同样适用于Hankel矩阵。我们的Toeplitz结果的一个结果是卷积神经网络的固定宽度通用近似定理,到目前为止,卷积神经网络只有任意宽度的版本。由于我们的结果特别适用于f是一般神经网络的情况,我们可以将它们视为神经网络的LU和Toeplitz分解。我们的结果的实际意义是,在不牺牲其普遍逼近能力的情况下,可以大大减少神经网络中权重参数的数量。我们将在真实数据集上进行几个实验,以表明将这种结构强加在权重矩阵上会显著减少训练参数的数量,而对测试准确性几乎没有明显影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信