Isolating all the real roots of a mixed trigonometric-polynomial

Pub Date : 2023-07-20 DOI:10.1016/j.jsc.2023.102250
Rizeng Chen , Haokun Li , Bican Xia , Tianqi Zhao , Tao Zheng
{"title":"Isolating all the real roots of a mixed trigonometric-polynomial","authors":"Rizeng Chen ,&nbsp;Haokun Li ,&nbsp;Bican Xia ,&nbsp;Tianqi Zhao ,&nbsp;Tao Zheng","doi":"10.1016/j.jsc.2023.102250","DOIUrl":null,"url":null,"abstract":"<div><p>Mixed trigonometric-polynomials (MTPs) are functions of the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>sin</mi><mo>⁡</mo><mi>x</mi><mo>,</mo><mi>cos</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></math></span> where <em>f</em> is a trivariate polynomial with rational coefficients, and the argument <em>x</em> ranges over the reals. In this paper, an algorithm “isolating” all the real roots of an MTP is provided and implemented. It automatically divides the real roots into two parts: one consists of finitely many roots in an interval <span><math><mo>[</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>]</mo></math></span> while the other consists of countably many roots in <span><math><mi>R</mi><mo>﹨</mo><mo>[</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>]</mo></math></span>. For the roots in <span><math><mo>[</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>]</mo></math></span>, the algorithm returns isolating intervals and corresponding multiplicities while for those greater than <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, it returns finitely many mutually disjoint small intervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⊂</mo><mo>[</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></math></span>, integers <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> and multisets of root multiplicity <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>j</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msubsup></math></span> such that any root <span><math><mo>&gt;</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> is in the set <span><math><mo>(</mo><msub><mrow><mo>∪</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mo>∪</mo></mrow><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></msub><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>)</mo><mo>)</mo></math></span> and any interval <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>2</mn><mi>k</mi><mi>π</mi><mo>⊂</mo><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> contains exactly <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> distinct roots with multiplicities <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>i</mi></mrow></msub></math></span>, respectively. The efficiency of the algorithm is shown by experiments. The method used to isolate the roots in <span><math><mo>[</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>]</mo></math></span><span><span> is applicable to any other bounded interval as well. The algorithm takes advantages of the weak Fourier sequence technique and deals with the intervals period-by-period without scaling the coordinate so to keep the length of the sequence short. The new approaches can easily be modified to decide whether there is any root, or whether there are infinitely many roots in </span>unbounded intervals of the form </span><span><math><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>a</mi><mo>)</mo></math></span> or <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>∈</mo><mi>Q</mi></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed trigonometric-polynomials (MTPs) are functions of the form f(x,sinx,cosx) where f is a trivariate polynomial with rational coefficients, and the argument x ranges over the reals. In this paper, an algorithm “isolating” all the real roots of an MTP is provided and implemented. It automatically divides the real roots into two parts: one consists of finitely many roots in an interval [μ,μ+] while the other consists of countably many roots in R[μ,μ+]. For the roots in [μ,μ+], the algorithm returns isolating intervals and corresponding multiplicities while for those greater than μ+, it returns finitely many mutually disjoint small intervals Ii[π,π], integers ci>0 and multisets of root multiplicity {mj,i}j=1ci such that any root >μ+ is in the set (ikN(Ii+2kπ)) and any interval Ii+2kπ(μ+,) contains exactly ci distinct roots with multiplicities m1,i,...,mci,i, respectively. The efficiency of the algorithm is shown by experiments. The method used to isolate the roots in [μ,μ+] is applicable to any other bounded interval as well. The algorithm takes advantages of the weak Fourier sequence technique and deals with the intervals period-by-period without scaling the coordinate so to keep the length of the sequence short. The new approaches can easily be modified to decide whether there is any root, or whether there are infinitely many roots in unbounded intervals of the form (,a) or (a,) with aQ.

分享
查看原文
分离一个混合三角多项式的所有实根
混合三角多项式(MTPs)是形式为f(x,sin)的函数⁡x、 cos⁡x) 其中f是具有有理系数的三元多项式,自变量x的范围在实数上。本文提供并实现了一种“隔离”MTP所有实根的算法。它自动将实根分为两部分:一部分由区间[μ−,μ+]中的有限多个根组成,另一部分由R中的可计数多个根构成﹨[μ−,μ+]。对于[μ−,μ+]中的根,该算法返回孤立区间和相应的乘法,而对于大于μ+的根,它返回有限多个相互不相交的小区间Ii⊂[-π,π],整数ci>;0和根多重性的多集{mj,i}j=1ci,使得任何根>;μ+在集合(Şiõk∈N(Ii+2kπ))中,并且任何区间Ii+2kπ⊂(μ+,∞)都包含具有乘法m1,i,…的ci个不同根,。。。,分别是mci和i。实验证明了该算法的有效性。用于隔离[μ−,μ+]中的根的方法也适用于任何其他有界区间。该算法利用弱傅立叶序列技术,在不缩放坐标的情况下逐周期处理区间,以保持序列长度较短。新方法可以很容易地修改,以确定在形式为(-∞,a)或(a,∞)且a∈Q的无界区间中是否存在根,或是否存在无穷多个根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信