Formations of finite groups in polynomial time: F-residuals and F-subnormality

Pub Date : 2023-09-25 DOI:10.1016/j.jsc.2023.102271
Viachaslau I. Murashka
{"title":"Formations of finite groups in polynomial time: F-residuals and F-subnormality","authors":"Viachaslau I. Murashka","doi":"10.1016/j.jsc.2023.102271","DOIUrl":null,"url":null,"abstract":"<div><p>For a wide family of formations <span><math><mi>F</mi></math></span> it is proved that the <span><math><mi>F</mi></math></span><span>-residual of a permutation<span> finite group can be computed in polynomial time. Moreover, if in the previous case </span></span><span><math><mi>F</mi></math></span> is hereditary, then the <span><math><mi>F</mi></math></span>-subnormality of a subgroup can be checked in polynomial time.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a wide family of formations F it is proved that the F-residual of a permutation finite group can be computed in polynomial time. Moreover, if in the previous case F is hereditary, then the F-subnormality of a subgroup can be checked in polynomial time.

分享
查看原文
多项式时间有限群的形成:f -残差和f -次正态
对于一个广泛的组F族,证明了置换有限群的F残差可以在多项式时间内计算。此外,如果在前面的情况下F是遗传的,那么可以在多项式时间内检查子群的F-子正规性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信