Hypericum sampsonii exhibits anti-inflammatory activity in a lipopolysaccharide-induced sepsis mouse model

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yin-Chieh Hsu , Shih-Ming Ou , Kai-Ru Zhuang , Ai-Ling Kuo , Wan-Jhen Li , Chun-Yi Huang , Chao-Hsiung Lin , Jih-Jung Chen , Shu-Ling Fu
{"title":"Hypericum sampsonii exhibits anti-inflammatory activity in a lipopolysaccharide-induced sepsis mouse model","authors":"Yin-Chieh Hsu ,&nbsp;Shih-Ming Ou ,&nbsp;Kai-Ru Zhuang ,&nbsp;Ai-Ling Kuo ,&nbsp;Wan-Jhen Li ,&nbsp;Chun-Yi Huang ,&nbsp;Chao-Hsiung Lin ,&nbsp;Jih-Jung Chen ,&nbsp;Shu-Ling Fu","doi":"10.1016/j.jtcme.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aim</h3><p>Sepsis causes an uncontrolled systemic response characterized by excessive inflammation and immune suppression, leading to multiple organ failure and death. An effective therapeutic strategy for sepsis-related syndromes is urgently needed. <em>Hypericum sampsonii</em> Hance (HS) is a folk herbal plant used to treat arthritis and dermatitis, but the anti-inflammatory properties of HS and its related compounds have rarely been investigated. In this study, we aimed to explore the anti-inflammatory effects of HS.</p></div><div><h3>Experimental procedure</h3><p>Models of bacterial lipopolysaccharide (LPS)-induced activated macrophages and endotoxemia mice were used, in which the TLR4/NF-κB signaling pathway is upregulated to trigger inflammatory responses. The HS extract (HSE) was delivered into LPS-induced endotoxemia mice via oral administration. Three compounds were purified using column chromatography and preparative thin layer chromatography and were validated by physical and spectroscopic data.</p></div><div><h3>Results</h3><p>HSE suppressed NF-κB activation and proinflammatory molecules (TNF-α, IL-6, iNOS) in LPS-activated RAW 264.7 macrophages. Furthermore, oral administration of HSE (200 mg/kg) to LPS-treated mice improved the survival rate, restored body temperature, decreased TNF-α and IL-6 in serum, and reduced IL-6 expression in bronchoalveolar lavage fluid (BALF). In lung tissues, HSE reduced LPS-induced leukocyte infiltration and the expression of proinflammatory molecules (TNF-α, IL-6, iNOS, CCL4 and CCL5). Three pure compounds isolated from HSE, including 2,4,6-trihydroxybenzophenone-4-O-geranyl ether, 1-hydroxy-7 methoxyxanthone and euxanthone, were demonstrated to exhibit anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages.</p></div><div><h3>Conclusion</h3><p>The present study demonstrated the anti-inflammatory effects of HS <em>in vitro</em> and <em>in vivo</em>. Further clinical studies of HS in human sepsis are warranted.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225411023000275","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aim

Sepsis causes an uncontrolled systemic response characterized by excessive inflammation and immune suppression, leading to multiple organ failure and death. An effective therapeutic strategy for sepsis-related syndromes is urgently needed. Hypericum sampsonii Hance (HS) is a folk herbal plant used to treat arthritis and dermatitis, but the anti-inflammatory properties of HS and its related compounds have rarely been investigated. In this study, we aimed to explore the anti-inflammatory effects of HS.

Experimental procedure

Models of bacterial lipopolysaccharide (LPS)-induced activated macrophages and endotoxemia mice were used, in which the TLR4/NF-κB signaling pathway is upregulated to trigger inflammatory responses. The HS extract (HSE) was delivered into LPS-induced endotoxemia mice via oral administration. Three compounds were purified using column chromatography and preparative thin layer chromatography and were validated by physical and spectroscopic data.

Results

HSE suppressed NF-κB activation and proinflammatory molecules (TNF-α, IL-6, iNOS) in LPS-activated RAW 264.7 macrophages. Furthermore, oral administration of HSE (200 mg/kg) to LPS-treated mice improved the survival rate, restored body temperature, decreased TNF-α and IL-6 in serum, and reduced IL-6 expression in bronchoalveolar lavage fluid (BALF). In lung tissues, HSE reduced LPS-induced leukocyte infiltration and the expression of proinflammatory molecules (TNF-α, IL-6, iNOS, CCL4 and CCL5). Three pure compounds isolated from HSE, including 2,4,6-trihydroxybenzophenone-4-O-geranyl ether, 1-hydroxy-7 methoxyxanthone and euxanthone, were demonstrated to exhibit anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages.

Conclusion

The present study demonstrated the anti-inflammatory effects of HS in vitro and in vivo. Further clinical studies of HS in human sepsis are warranted.

Abstract Image

金丝桃在脂多糖诱导的脓毒症小鼠模型中表现出抗炎活性
背景和目的脓毒症引起不受控制的全身反应,其特征是过度炎症和免疫抑制,导致多器官衰竭和死亡。迫切需要一种有效的治疗败血症相关综合征的策略。金丝桃(HS)是一种用于治疗关节炎和皮炎的民间草药,但其抗炎特性及其相关化合物很少被研究。在本研究中,我们旨在探索HS的抗炎作用。实验程序使用细菌脂多糖(LPS)诱导的活化巨噬细胞和内毒素血症小鼠模型,其中TLR4/NF-κB信号通路上调以触发炎症反应。通过口服将HS提取物(HSE)递送到LPS诱导的内毒素血症小鼠中。用柱色谱法和制备薄层色谱法对三种化合物进行了纯化,并通过物理和光谱数据进行了验证。结果HSE抑制LPS激活的RAW 264.7巨噬细胞的NF-κB活化和促炎分子(TNF-α、IL-6、iNOS)。此外,LPS处理的小鼠口服HSE(200mg/kg)可提高存活率,恢复体温,降低血清中TNF-α和IL-6,并降低支气管肺泡灌洗液(BALF)中IL-6的表达。在肺组织中,HSE减少了LPS诱导的白细胞浸润和促炎分子(TNF-α、IL-6、iNOS、CCL4和CCL5)的表达。从HSE中分离出的三种纯化合物,包括2,4,6-三羟基二苯甲酮-4-O-香叶基醚、1-羟基-7甲氧基黄酮和真黄酮,被证明在LPS刺激的RAW 264.7巨噬细胞中表现出抗炎活性。结论HS具有体内外抗炎作用。有必要对人类败血症中HS进行进一步的临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信