{"title":"Numerical investigation into the composite behaviour of over-deformed segmental tunnel linings strengthened by bonding steel plates","authors":"Wuzhou Zhai , Dongming Zhang , Hongwei Huang , David Chapman","doi":"10.1016/j.sandf.2023.101335","DOIUrl":null,"url":null,"abstract":"<div><p>Bonding steel plate has been used as a strengthening approach to repair disrupted segmental lining of operational tunnels. This paper introduces numerical investigation into the composite behaviour of the initially deformed segmental tunnel linings strengthened by bonding steel plates using finite element modelling. Cohesive zone modelling was used to simulate the interface bonding behaviour between the segmental linings and steel plates. The full history of the tunnel behaviour before and after strengthening were simulated, where the segmental tunnel lining is initially loaded to create some deformation, then after bonding steel plate, the strengthened tunnel is reloaded until failure occurs. By comparing the results with experimental data from the literature, the proposed model was proved to be capable of simulating the strengthened lining behaviour and able to capture the strengthening failure process in terms of the interface debonding. Subsequently, the segmental lining response and interface shear stress distribution and propagation were analysed to interpret the interaction and failure mechanism of the steel plate strengthened segmental linings. The influence of the initial deformation and the steel plate thickness were investigated and discussed in terms of the strengthened stiffness and capacity. It has been found that the interface shear stress concentration occurred at the positions of the segment joints, where bond damage first initiated. The ultimate failure of the steel plate strengthening happened suddenly once a local debonding zone close to the segmental joint was formed. In addition, the predicted results indicate that a delay in strengthening would result in an increase in strengthened capacity but a decrease in strengthened stiffness. By using thicker steel plates, the strengthened stiffness was improved, while the strengthened capacity could be improved only if the thickness was relatively thin.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623000641","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Bonding steel plate has been used as a strengthening approach to repair disrupted segmental lining of operational tunnels. This paper introduces numerical investigation into the composite behaviour of the initially deformed segmental tunnel linings strengthened by bonding steel plates using finite element modelling. Cohesive zone modelling was used to simulate the interface bonding behaviour between the segmental linings and steel plates. The full history of the tunnel behaviour before and after strengthening were simulated, where the segmental tunnel lining is initially loaded to create some deformation, then after bonding steel plate, the strengthened tunnel is reloaded until failure occurs. By comparing the results with experimental data from the literature, the proposed model was proved to be capable of simulating the strengthened lining behaviour and able to capture the strengthening failure process in terms of the interface debonding. Subsequently, the segmental lining response and interface shear stress distribution and propagation were analysed to interpret the interaction and failure mechanism of the steel plate strengthened segmental linings. The influence of the initial deformation and the steel plate thickness were investigated and discussed in terms of the strengthened stiffness and capacity. It has been found that the interface shear stress concentration occurred at the positions of the segment joints, where bond damage first initiated. The ultimate failure of the steel plate strengthening happened suddenly once a local debonding zone close to the segmental joint was formed. In addition, the predicted results indicate that a delay in strengthening would result in an increase in strengthened capacity but a decrease in strengthened stiffness. By using thicker steel plates, the strengthened stiffness was improved, while the strengthened capacity could be improved only if the thickness was relatively thin.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.