Lower bounds on the rank and symmetric rank of real tensors

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Kexin Wang , Anna Seigal
{"title":"Lower bounds on the rank and symmetric rank of real tensors","authors":"Kexin Wang ,&nbsp;Anna Seigal","doi":"10.1016/j.jsc.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>We lower bound the rank of a tensor by a linear combination of the ranks of three of its unfoldings, using Sylvester's rank inequality. In a similar way, we lower bound the symmetric rank by a linear combination of the symmetric ranks of three unfoldings. Lower bounds on the rank and symmetric rank of tensors are important for finding </span>counterexamples to Comon's conjecture. A real counterexample to Comon's conjecture is a tensor whose real rank and real symmetric rank differ. Previously, only one real counterexample was known, constructed in a paper of Shitov. We divide the construction into three steps. The first step involves linear spaces of binary tensors. The second step considers a linear space of larger decomposable tensors. The third step is to verify a conjecture that lower bounds the symmetric rank, on a tensor of interest. We use the construction to build an order six real tensor whose real rank and real symmetric rank differ.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"118 ","pages":"Pages 69-92"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We lower bound the rank of a tensor by a linear combination of the ranks of three of its unfoldings, using Sylvester's rank inequality. In a similar way, we lower bound the symmetric rank by a linear combination of the symmetric ranks of three unfoldings. Lower bounds on the rank and symmetric rank of tensors are important for finding counterexamples to Comon's conjecture. A real counterexample to Comon's conjecture is a tensor whose real rank and real symmetric rank differ. Previously, only one real counterexample was known, constructed in a paper of Shitov. We divide the construction into three steps. The first step involves linear spaces of binary tensors. The second step considers a linear space of larger decomposable tensors. The third step is to verify a conjecture that lower bounds the symmetric rank, on a tensor of interest. We use the construction to build an order six real tensor whose real rank and real symmetric rank differ.

实张量的秩和对称秩的下界
我们使用Sylvester秩不等式,通过三个展开的秩的线性组合来下界张量的秩。以类似的方式,我们通过三个展开的对称秩的线性组合来下界对称秩。张量秩和对称秩的下界对于寻找Comon猜想的反例是很重要的。科蒙猜想的一个真正反例是实秩和实对称秩不同的张量。以前,只有一个真正的反例是已知的,在希托夫的一篇论文中构建的。我们把施工分为三个步骤。第一步涉及二元张量的线性空间。第二步考虑具有较大可分解张量的线性空间。第三步是在感兴趣的张量上验证对称秩下界的猜想。我们使用该构造来构建一个实秩和实对称秩不同的六阶实张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信