Algebraic number fields and the LLL algorithm

Pub Date : 2023-08-18 DOI:10.1016/j.jsc.2023.102261
M.J. Uray
{"title":"Algebraic number fields and the LLL algorithm","authors":"M.J. Uray","doi":"10.1016/j.jsc.2023.102261","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper we analyze the computational costs of various operations and algorithms in algebraic number fields using exact arithmetic. Let </span><em>K</em> be an algebraic number field. In the first half of the paper, we calculate the running time and the size of the output of many operations in <em>K</em> in terms of the size of the input and the parameters of <em>K</em>. We include some earlier results about these, but we go further than them, e.g. we also analyze some <span><math><mi>R</mi></math></span>-specific operations in <em>K</em> like less-than comparison.</p><p><span>In the second half of the paper, we analyze two algorithms: the Bareiss algorithm, which is an integer-preserving version of the Gaussian elimination, and the LLL algorithm, which is for lattice basis reduction. In both cases, we extend the algorithm from </span><span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, and give a polynomial upper bound on the running time when the computations in <em>K</em> are performed exactly (as opposed to floating-point approximations).</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we analyze the computational costs of various operations and algorithms in algebraic number fields using exact arithmetic. Let K be an algebraic number field. In the first half of the paper, we calculate the running time and the size of the output of many operations in K in terms of the size of the input and the parameters of K. We include some earlier results about these, but we go further than them, e.g. we also analyze some R-specific operations in K like less-than comparison.

In the second half of the paper, we analyze two algorithms: the Bareiss algorithm, which is an integer-preserving version of the Gaussian elimination, and the LLL algorithm, which is for lattice basis reduction. In both cases, we extend the algorithm from Zn to Kn, and give a polynomial upper bound on the running time when the computations in K are performed exactly (as opposed to floating-point approximations).

分享
查看原文
代数数字字段和LLL算法
在本文中,我们使用精确算术来分析代数数域中各种运算和算法的计算成本。设K是一个代数数域。在论文的前半部分,我们根据K的输入大小和参数来计算K中许多运算的运行时间和输出大小。我们包括了一些关于这些运算的早期结果,但我们比它们走得更远,例如,我们还分析了K中一些特定于R的运算,如小于比较。在论文的后半部分,我们分析了两种算法:Bareiss算法和LLL算法,前者是高斯消去的整数保留版本,后者用于格基约简。在这两种情况下,我们都将算法从Zn扩展到Kn,并在精确执行K中的计算时给出运行时间的多项式上界(与浮点近似相反)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信