Thi Phuong Thao Truong, Thanh Men Tran, Thi Xuan Trang Dai, Chi Linh Tran
{"title":"Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides)","authors":"Thi Phuong Thao Truong, Thanh Men Tran, Thi Xuan Trang Dai, Chi Linh Tran","doi":"10.1016/j.jtcme.2023.03.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><p>Brown algae (<em>Dictyopteris polypodioides</em>) extract (DP) presented high inhibitory potential against α-amylase. The present study aims to isolate, purify and evaluate the antihyperglycemic and anti-type 2 diabetic activities of marine hydroquinone from DP.</p></div><div><h3>Methods</h3><p>Marine hydroquinones were isolated using silica gel, HPLC, and NMR spectroscopy was used to identify compound 1 and compound 2 as zonarol and isozonarol, respectively. The anti-hyperglycemic and anti-type 2 diabetic activities of zonarol were investigated by <em>in vitro</em> assay (α-amylase, α-glucosidase), Lineweaver–Burk plot and Type 2 diabetes mellitus model (T2DM) mice induced by streptozotocin (STZ).</p></div><div><h3>Result</h3><p>Zonarol had the highest content and the strongest inhibitory activity against α-glucosidase (IC<sub>50</sub> value of 6.03 mg L<sup>−1</sup>) and α-amylase (IC<sub>50</sub> value of 19.29 mg L<sup>−1</sup>) in a competitive inhibition and mix-type manner, respectively. The maltose and starch loading tests revealed that zonarol significantly reduced postprandial glycemia after 30 min loading (9.12 and 8.12 mg/dL, respectively), compared to normal (11.37 and 12.37 mg/dL, respectively). Zonarol exhibited pancreatic islet cell rejuvenation, as evidenced by increased pancreatic islet mass, and hence helps in the restoration of insulin levels and therefore improves the glucose metabolism in STZ-induced diabetic mice. Zonarol treatment in T2DM elevated abundant levels of main SCFAs (propionate, butyrate, and valeric acid), which are closely related to glucose metabolism homeostasis.</p></div><div><h3>Conclusion</h3><p>Our finding indicates that zonarol could be used as a food supplement to treat hyperglycemia and diabetes.</p></div>","PeriodicalId":17449,"journal":{"name":"Journal of Traditional and Complementary Medicine","volume":"13 4","pages":"Pages 408-416"},"PeriodicalIF":3.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Traditional and Complementary Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225411023000421","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 1
Abstract
Background and aims
Brown algae (Dictyopteris polypodioides) extract (DP) presented high inhibitory potential against α-amylase. The present study aims to isolate, purify and evaluate the antihyperglycemic and anti-type 2 diabetic activities of marine hydroquinone from DP.
Methods
Marine hydroquinones were isolated using silica gel, HPLC, and NMR spectroscopy was used to identify compound 1 and compound 2 as zonarol and isozonarol, respectively. The anti-hyperglycemic and anti-type 2 diabetic activities of zonarol were investigated by in vitro assay (α-amylase, α-glucosidase), Lineweaver–Burk plot and Type 2 diabetes mellitus model (T2DM) mice induced by streptozotocin (STZ).
Result
Zonarol had the highest content and the strongest inhibitory activity against α-glucosidase (IC50 value of 6.03 mg L−1) and α-amylase (IC50 value of 19.29 mg L−1) in a competitive inhibition and mix-type manner, respectively. The maltose and starch loading tests revealed that zonarol significantly reduced postprandial glycemia after 30 min loading (9.12 and 8.12 mg/dL, respectively), compared to normal (11.37 and 12.37 mg/dL, respectively). Zonarol exhibited pancreatic islet cell rejuvenation, as evidenced by increased pancreatic islet mass, and hence helps in the restoration of insulin levels and therefore improves the glucose metabolism in STZ-induced diabetic mice. Zonarol treatment in T2DM elevated abundant levels of main SCFAs (propionate, butyrate, and valeric acid), which are closely related to glucose metabolism homeostasis.
Conclusion
Our finding indicates that zonarol could be used as a food supplement to treat hyperglycemia and diabetes.
期刊介绍:
eJTCM is committed to publish research providing the biological and clinical grounds for using Traditional and Complementary Medical treatments as well as studies that demonstrate the pathophysiological and molecular/biochemical bases supporting the effectiveness of such treatments. Review articles are by invitation only.
eJTCM is receiving an increasing amount of submission, and we need to adopt more stringent criteria to select the articles that can be considered for peer review. Note that eJTCM is striving to increase the quality and medical relevance of the publications.