Realisations of Racah algebras using Jacobi operators and convolution identities

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Q. Labriet , L. Poulain d'Andecy
{"title":"Realisations of Racah algebras using Jacobi operators and convolution identities","authors":"Q. Labriet ,&nbsp;L. Poulain d'Andecy","doi":"10.1016/j.aam.2023.102620","DOIUrl":null,"url":null,"abstract":"<div><p>Using the representation theory of <span><math><mi>s</mi><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and an appropriate model for tensor product of lowest weight Verma modules, we give a realisation first of the Hahn algebra, and then of the Racah algebra, using Jacobi differential operators. While doing so we recover some known convolution formulas for Jacobi polynomials involving Hahn and Racah polynomials. Similarly, we produce realisations of the higher rank Racah algebras in which maximal commutative subalgebras are realised in terms of Jacobi differential operators.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001380","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Using the representation theory of sl2 and an appropriate model for tensor product of lowest weight Verma modules, we give a realisation first of the Hahn algebra, and then of the Racah algebra, using Jacobi differential operators. While doing so we recover some known convolution formulas for Jacobi polynomials involving Hahn and Racah polynomials. Similarly, we produce realisations of the higher rank Racah algebras in which maximal commutative subalgebras are realised in terms of Jacobi differential operators.

利用Jacobi算子和卷积恒等式实现Racah代数
利用sl2的表示理论和最低权Verma模的张量积的一个适当模型,我们首先用Jacobi微分算子实现了Hahn代数,然后又实现了Racah代数。在这样做的同时,我们恢复了涉及Hahn和Racah多项式的Jacobi多项式的一些已知卷积公式。类似地,我们产生了高阶Racah代数的实现,其中最大交换子代数是根据Jacobi微分算子实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信