{"title":"MacWilliams' Extension Theorem for rank-metric codes","authors":"Elisa Gorla, Flavio Salizzoni","doi":"10.1016/j.jsc.2023.102263","DOIUrl":null,"url":null,"abstract":"<div><p>The MacWilliams' Extension Theorem is a classical result by Florence Jessie MacWilliams. It shows that every linear isometry between linear block-codes endowed with the Hamming distance can be extended to a linear isometry of the ambient space. Such an extension fails to exist in general for rank-metric codes, that is, one can easily find examples of linear isometries between rank-metric codes which cannot be extended to linear isometries of the ambient space. In this paper, we explore to what extent a MacWilliams' Extension Theorem may hold for rank-metric codes. We provide an extensive list of examples of obstructions to the existence of an extension, as well as a positive result.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"122 ","pages":"Article 102263"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000779","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The MacWilliams' Extension Theorem is a classical result by Florence Jessie MacWilliams. It shows that every linear isometry between linear block-codes endowed with the Hamming distance can be extended to a linear isometry of the ambient space. Such an extension fails to exist in general for rank-metric codes, that is, one can easily find examples of linear isometries between rank-metric codes which cannot be extended to linear isometries of the ambient space. In this paper, we explore to what extent a MacWilliams' Extension Theorem may hold for rank-metric codes. We provide an extensive list of examples of obstructions to the existence of an extension, as well as a positive result.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.