Frames by orbits of two operators that commute

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
A. Aguilera , C. Cabrelli , D. Carbajal , V. Paternostro
{"title":"Frames by orbits of two operators that commute","authors":"A. Aguilera ,&nbsp;C. Cabrelli ,&nbsp;D. Carbajal ,&nbsp;V. Paternostro","doi":"10.1016/j.acha.2023.04.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>Frames formed by orbits of vectors through the iteration of a bounded operator<span> have recently attracted considerable attention, in particular due to its applications to dynamical sampling. In this article, we consider two commuting bounded operators acting on some separable Hilbert space </span></span><span><math><mi>H</mi></math></span>. We completely characterize operators <em>T</em> and <em>L</em> with <span><math><mi>T</mi><mi>L</mi><mo>=</mo><mi>L</mi><mi>T</mi></math></span> and sets <span><math><mi>Φ</mi><mo>⊂</mo><mi>H</mi></math></span> such that the collection <span><math><mo>{</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><msup><mrow><mi>L</mi></mrow><mrow><mi>j</mi></mrow></msup><mi>ϕ</mi><mo>:</mo><mi>k</mi><mo>∈</mo><mi>Z</mi><mo>,</mo><mi>j</mi><mo>∈</mo><mi>J</mi><mo>,</mo><mi>ϕ</mi><mo>∈</mo><mi>Φ</mi><mo>}</mo></math></span> forms a frame of <span><math><mi>H</mi></math></span><span><span>. This is done in terms of model subspaces of the space of square integrable functions defined on the torus and having values in some </span>Hardy space with multiplicity. The operators acting on these models are the bilateral shift and the compression of the unilateral shift (acting pointwisely). This context includes the case when the Hilbert space </span><span><math><mi>H</mi></math></span> is a subspace of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, invariant under translations along the integers, where the operator <em>T</em> is the translation by one and <em>L</em> is a shift-preserving operator.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 46-61"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Frames formed by orbits of vectors through the iteration of a bounded operator have recently attracted considerable attention, in particular due to its applications to dynamical sampling. In this article, we consider two commuting bounded operators acting on some separable Hilbert space H. We completely characterize operators T and L with TL=LT and sets ΦH such that the collection {TkLjϕ:kZ,jJ,ϕΦ} forms a frame of H. This is done in terms of model subspaces of the space of square integrable functions defined on the torus and having values in some Hardy space with multiplicity. The operators acting on these models are the bilateral shift and the compression of the unilateral shift (acting pointwisely). This context includes the case when the Hilbert space H is a subspace of L2(R), invariant under translations along the integers, where the operator T is the translation by one and L is a shift-preserving operator.

两个可交换算子的轨道坐标系
最近,由向量轨道通过有界算子的迭代形成的框架引起了相当大的关注,特别是由于其在动态采样中的应用。在本文中,我们考虑作用于一些可分离Hilbert空间H上的两个可交换有界算子。我们完全刻画了算子T和L的TL=LT,并设置Φ⊂H,使得集合{TkLjΓ:k∈Z,j∈j,Γ∈Φ}形成H的框架。这是根据在环面上定义的平方可积函数空间的模型子空间来完成的,并且在一些具有多重性的Hardy空间中具有值。作用于这些模型的算子是双边偏移和单边偏移的压缩(逐点作用)。该上下文包括当希尔伯特空间H是L2(R)的子空间时的情况,该子空间在沿整数的平移下是不变的,其中算子T是平移一,L是保持移位的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信