Equivalence and reduction of bivariate polynomial matrices to their Smith forms

Pub Date : 2023-09-01 DOI:10.1016/j.jsc.2023.01.001
Dong Lu , Dingkang Wang , Fanghui Xiao , Xiaopeng Zheng
{"title":"Equivalence and reduction of bivariate polynomial matrices to their Smith forms","authors":"Dong Lu ,&nbsp;Dingkang Wang ,&nbsp;Fanghui Xiao ,&nbsp;Xiaopeng Zheng","doi":"10.1016/j.jsc.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper is concerned with Smith forms of bivariate<span> polynomial matrices. For a bivariate polynomial </span></span>square matrix<span> with the determinant being the product of two distinct and irreducible univariate polynomials<span>, we prove that it is equivalent to its Smith form. We design an algorithm to reduce this class of bivariate polynomial matrices to their Smith forms, and an example is given to illustrate the algorithm. Furthermore, we extend the above class of matrices to a more general case, and derive a necessary and sufficient condition for the equivalence of a matrix and one of its all possible existing Smith forms.</span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with Smith forms of bivariate polynomial matrices. For a bivariate polynomial square matrix with the determinant being the product of two distinct and irreducible univariate polynomials, we prove that it is equivalent to its Smith form. We design an algorithm to reduce this class of bivariate polynomial matrices to their Smith forms, and an example is given to illustrate the algorithm. Furthermore, we extend the above class of matrices to a more general case, and derive a necessary and sufficient condition for the equivalence of a matrix and one of its all possible existing Smith forms.

分享
查看原文
二元多项式矩阵的等价与约简
本文研究二元多项式矩阵的Smith形式。对于行列式是两个不同且不可约的一元多项式的乘积的二元多项式平方矩阵,我们证明了它等价于它的Smith形式。我们设计了一种将这类二元多项式矩阵简化为其Smith形式的算法,并给出了一个算例来说明该算法。此外,我们将上述矩阵类推广到一个更一般的情况,并导出了矩阵与其所有可能存在的Smith形式之一等价的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信