Geochemical and mineralogical evaluation of Libale iron- rich manganese deposit, North-central Nigeria

N.G. Obaje , U.A. Hassan , S.O. Idakwo
{"title":"Geochemical and mineralogical evaluation of Libale iron- rich manganese deposit, North-central Nigeria","authors":"N.G. Obaje ,&nbsp;U.A. Hassan ,&nbsp;S.O. Idakwo","doi":"10.1016/j.oreoa.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>The iron-rich manganese deposits of Libale area is located within the basement complex of North-central Nigeria. Mineralogically, the major mineral phases are: goethite (Fe<sub>2</sub>O<sub>3</sub>.H<sub>2</sub>O), spessartine (Mn<sub>3</sub><sup>2+</sup>Al<sub>2</sub>(SiO<sub>4</sub>)<sub>3</sub>), hematite (Fe<sub>2</sub>O<sub>3</sub>), and quartz (SiO<sub>2</sub>), while minor mineral phases are orthoclase (Al<sub>2</sub>O<sub>3</sub>.K<sub>2</sub>O.6 SiO<sub>2</sub>), illite (KAl<sub>2</sub>Si<sub>3</sub>AlO<sub>10</sub>(OH)<sub>2</sub>), and manganite (Mn<sub>2</sub>O<sub>3</sub>.H<sub>2</sub>O) suggesting a trend of mineral assemblage attributed to the differential mineralization of the iron-manganese deposit that may have been caused by the geochemical tectonic activity during its formation. Geochemically, on average, the Fe<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, CaO, P<sub>2</sub>O<sub>5</sub> content are 34.59 wt.%; 26.30 wt.%; 6.94 wt%, 2.60 wt%, 2.01 wt% correspondently while K<sub>2</sub>O and TiO<sub>2</sub> are less than 1wt%. Suggesting oxide facies type for the deposit. The trace element composition of V (1040 ppm), Cr (100 ppm), Co (833.33 ppm), Cu (1740 ppm), Nb (1280 ppm), W (240 ppm), Ta (320 ppm) and Zr (302 ppm) were relatively high compared to Maro, Muro and Kakun BIFs in North-central Nigeria. Bivariate plot of Fe<sub>2</sub>O<sub>3</sub> Vs. Al<sub>2</sub>O<sub>3</sub>, suggest enrichment of Fe<sub>2</sub>O<sub>3</sub> but depleted in SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>, which possibly indicates replacement of precursor silica and kaolinite with goethite which are subsequently dehydrated to hematite. Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> ternary diagram indicates Precambrian Banded Iron Formation (BIF) for the Libale iron- rich manganese deposits, this was confirmed by MnO Vs. FeO. Discriminative plots: FeO. SiO<sub>2</sub> - (FeO + MnO) - Fe<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>+ K<sub>2</sub>O + Na<sub>2</sub>O Vs. MnO + FeO confirmed mixed facies as the analyzed data plots between silicate facies and magnetic-silicate facies, this is linked to chemical association between Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> for the iron-rich as it confirms a transitional grade of silicate facies to magnetite-silicate facies. SiO<sub>2</sub> Vs. Al<sub>2</sub>O<sub>3</sub> plot revealed hydrothermal and diagenetic processes for its deposition. The iron-rich manganese deposit is of low grade iron (Av. Fe=24.19%) characterized by ferruginous manganese (Av. MnO<sub>2</sub>=23.82%) based on the generalized percentages of element of major interest in assessing quality of iron and manganese ore, therefore, good for cast iron production.</p></div>","PeriodicalId":100993,"journal":{"name":"Ore and Energy Resource Geology","volume":"15 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore and Energy Resource Geology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666261223000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The iron-rich manganese deposits of Libale area is located within the basement complex of North-central Nigeria. Mineralogically, the major mineral phases are: goethite (Fe2O3.H2O), spessartine (Mn32+Al2(SiO4)3), hematite (Fe2O3), and quartz (SiO2), while minor mineral phases are orthoclase (Al2O3.K2O.6 SiO2), illite (KAl2Si3AlO10(OH)2), and manganite (Mn2O3.H2O) suggesting a trend of mineral assemblage attributed to the differential mineralization of the iron-manganese deposit that may have been caused by the geochemical tectonic activity during its formation. Geochemically, on average, the Fe2O3, SiO2, Al2O3, CaO, P2O5 content are 34.59 wt.%; 26.30 wt.%; 6.94 wt%, 2.60 wt%, 2.01 wt% correspondently while K2O and TiO2 are less than 1wt%. Suggesting oxide facies type for the deposit. The trace element composition of V (1040 ppm), Cr (100 ppm), Co (833.33 ppm), Cu (1740 ppm), Nb (1280 ppm), W (240 ppm), Ta (320 ppm) and Zr (302 ppm) were relatively high compared to Maro, Muro and Kakun BIFs in North-central Nigeria. Bivariate plot of Fe2O3 Vs. Al2O3, suggest enrichment of Fe2O3 but depleted in SiO2 and Al2O3, which possibly indicates replacement of precursor silica and kaolinite with goethite which are subsequently dehydrated to hematite. Al2O3-SiO2-Fe2O3 ternary diagram indicates Precambrian Banded Iron Formation (BIF) for the Libale iron- rich manganese deposits, this was confirmed by MnO Vs. FeO. Discriminative plots: FeO. SiO2 - (FeO + MnO) - Fe2O3 and Al2O3+ K2O + Na2O Vs. MnO + FeO confirmed mixed facies as the analyzed data plots between silicate facies and magnetic-silicate facies, this is linked to chemical association between Al2O3 and SiO2 for the iron-rich as it confirms a transitional grade of silicate facies to magnetite-silicate facies. SiO2 Vs. Al2O3 plot revealed hydrothermal and diagenetic processes for its deposition. The iron-rich manganese deposit is of low grade iron (Av. Fe=24.19%) characterized by ferruginous manganese (Av. MnO2=23.82%) based on the generalized percentages of element of major interest in assessing quality of iron and manganese ore, therefore, good for cast iron production.

Abstract Image

尼日利亚中北部利巴莱富铁锰矿床地球化学与矿物学评价
Libale地区的富铁锰矿床位于尼日利亚中北部的基底复合体内。在矿物学上,主要矿物相为:针铁矿(Fe2O3.H2O)、锡铁矿(Mn32+Al2(SiO4)3)、赤铁矿(Fe2O3)和石英(SiO2),而次要矿物相为正长石(Al2O3.K2O.6 SiO2)、伊利石(KAl2Si3AlO10(OH)2),和锰铁矿(Mn2O3.H2O),表明铁锰矿床的差异矿化可能是由其形成过程中的地球化学构造活动引起的矿物组合趋势。从地球化学角度来看,Fe2O3、SiO2、Al2O3、CaO、P2O5的含量平均为34.59wt%;26.30重量%;分别为6.94wt%、2.60wt%和2.01wt%,而K2O和TiO2的含量小于1wt%。提示矿床的氧化物相类型。与尼日利亚中北部的Maro、Muro和Kakun BIF相比,V(1040ppm)、Cr(100ppm)、Co(833.33ppm)、Cu(1740ppm)、Nb(1280ppm)、W(240ppm)、Ta(320ppm)和Zr(302ppm)的微量元素组成相对较高。Fe2O3与Al2O3的二元图表明Fe2O3富集,但SiO2和Al2O3贫化,这可能表明前体二氧化硅和高岭石被针铁矿取代,针铁矿随后脱水为赤铁矿。Al2O3-SiO2-Fe2O3三元图显示了利巴尔富铁锰矿床的前寒武纪带状铁形成(BIF),MnO与FeO的对比证实了这一点。判别图:FeO。SiO2-(FeO+MnO)-Fe2O3和Al2O3+K2O+Na2O Vs.MnO+FeO证实了混合相,作为硅酸盐相和磁性硅酸盐相之间的分析数据图,这与富含铁的Al2O3和SiO2之间的化学缔合有关,因为它证实了硅酸盐相向磁铁矿-硅酸盐相的过渡等级。SiO2与Al2O3的对比图揭示了其沉积的热液和成岩过程。富铁锰矿床为低品位铁(Av.Fe=24.19%),其特征为含铁锰(Av.MnO2=23.82%),基于评估铁和锰矿质量的主要元素的一般百分比,因此有利于铸铁生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信