The cost differential for an optimal train journey on level track

IF 2.6 Q3 TRANSPORTATION
Phil Howlett, Peter Pudney
{"title":"The cost differential for an optimal train journey on level track","authors":"Phil Howlett,&nbsp;Peter Pudney","doi":"10.1016/j.jrtpm.2023.100393","DOIUrl":null,"url":null,"abstract":"<div><p><span>The classic optimal train control problem is to drive a train on a track with known gradient over a fixed distance and within a specified time in such a way as to minimize tractive energy consumption. On level track the optimal strategies take two basic forms—a truncated strategy of optimal type with phases of </span><span><em>maximum acceleration</em></span>, <em>coast</em> and <em>maximum brake</em> which is typical of shorter metropolitan journeys, and an extended strategy of optimal type with phases of <em>maximum acceleration</em>, <em>speedhold</em> at the optimal driving speed, <em>coast</em> to the optimal braking speed, and <em>maximum brake</em> which is typical of longer journeys by freight trains and intercity passenger trains. The cost of these optimal strategies is uniquely determined by the journey distance and journey time. In this paper we extend a previously known formula for the partial rate of change of cost with respect to journey time to a formula for the full rate of change of cost that also incorporates the partial rate of change of cost with respect to journey distance.</p></div>","PeriodicalId":51821,"journal":{"name":"Journal of Rail Transport Planning & Management","volume":"26 ","pages":"Article 100393"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rail Transport Planning & Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210970623000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The classic optimal train control problem is to drive a train on a track with known gradient over a fixed distance and within a specified time in such a way as to minimize tractive energy consumption. On level track the optimal strategies take two basic forms—a truncated strategy of optimal type with phases of maximum acceleration, coast and maximum brake which is typical of shorter metropolitan journeys, and an extended strategy of optimal type with phases of maximum acceleration, speedhold at the optimal driving speed, coast to the optimal braking speed, and maximum brake which is typical of longer journeys by freight trains and intercity passenger trains. The cost of these optimal strategies is uniquely determined by the journey distance and journey time. In this paper we extend a previously known formula for the partial rate of change of cost with respect to journey time to a formula for the full rate of change of cost that also incorporates the partial rate of change of cost with respect to journey distance.

水平轨道上最优列车行程的成本差异
经典的最优列车控制问题是在具有已知坡度的轨道上,在固定距离和指定时间内驾驶列车,以使牵引能量消耗最小化。在水平轨道上,最优策略有两种基本形式——一种是具有最大加速度、滑行和最大制动阶段的最优截断策略,这是较短的大都市旅程的典型阶段;另一种是带有最大加速度、最佳行驶速度下的保持速度、滑行至最佳制动速度阶段的最优扩展策略,以及最大制动,这是货运列车和城际客运列车长途旅行的典型情况。这些最优策略的成本是由行程距离和行程时间唯一决定的。在本文中,我们将先前已知的成本相对于行程时间的部分变化率公式扩展为成本完全变化率公式,该公式还包含了成本相对于行程距离的部分变化速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
8.10%
发文量
41
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信