D. Della Crociata, I. Maskery, R. Hague, M. Simonelli
{"title":"On the development of twinning-induced plasticity in additively manufactured 316L stainless steel","authors":"D. Della Crociata, I. Maskery, R. Hague, M. Simonelli","doi":"10.1016/j.addlet.2023.100176","DOIUrl":null,"url":null,"abstract":"<div><p>A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels in a single specimen. Hardness and twinning concentration were observed to increase with strain up to peak values of 380 ± 10 HV and 28 ± 4%, respectively. Furthermore, twin formation was found to be regulated by grain size and crystal texture. This methodology can be applied to new AM materials development and will inform the design of energy-absorbing structures that maximise the benefits of AM design and strain-hardenable materials.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels in a single specimen. Hardness and twinning concentration were observed to increase with strain up to peak values of 380 ± 10 HV and 28 ± 4%, respectively. Furthermore, twin formation was found to be regulated by grain size and crystal texture. This methodology can be applied to new AM materials development and will inform the design of energy-absorbing structures that maximise the benefits of AM design and strain-hardenable materials.